|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocm61386071 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
050830s2005 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d YDXCP
|d OCLCG
|d OCLCQ
|d E7B
|d IDEBK
|d OCLCQ
|d TUU
|d AU@
|d OCLCQ
|d REDDC
|d OCLCQ
|d CAMBR
|d OL$
|d OCLCQ
|d SLY
|d OCLCF
|d OCLCQ
|d HEBIS
|d OCLCO
|d WY@
|d LUE
|d EBLCP
|d UAB
|d STF
|d OCLCQ
|d OCLCA
|d K6U
|d OCLCQ
|d UKAHL
|d OCLCO
|d ANO
|d OCLCQ
|d INARC
|d OCLCO
|
016 |
7 |
|
|a 013135808
|2 Uk
|
019 |
|
|
|a 271683029
|a 666952303
|a 813436779
|a 846302918
|a 880320283
|
020 |
|
|
|a 0511125747
|q (electronic bk.)
|
020 |
|
|
|a 9780511125744
|q (electronic bk.)
|
020 |
|
|
|a 9780511542800
|q (electronic bk.)
|
020 |
|
|
|a 0511542801
|q (electronic bk.)
|
020 |
|
|
|z 0521837030
|q (Cloth)
|
020 |
|
|
|z 9780521837033
|
029 |
1 |
|
|a AU@
|b 000042902226
|
035 |
|
|
|a (OCoLC)61386071
|z (OCoLC)271683029
|z (OCoLC)666952303
|z (OCoLC)813436779
|z (OCoLC)846302918
|z (OCoLC)880320283
|
050 |
|
4 |
|a QA171
|b .K54 2005eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512.5
|2 22
|
082 |
0 |
4 |
|a 512.2
|2 22
|
084 |
|
|
|a O152. 6
|2 clc
|
084 |
|
|
|a O187. 2
|2 clc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kleshchëv, A. S.
|q (Aleksandr Sergeevich)
|
245 |
1 |
0 |
|a Linear and projective representations of symmetric groups /
|c Alexander Kleshchev.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2005.
|
300 |
|
|
|a 1 online resource (xiv, 277 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge tracts in mathematics ;
|v 163
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The representation theory of symmetric groups is one of the most beautiful, popular, and important parts of algebra with many deep relations to other areas of mathematics, such as combinatorics, Lie theory, and algebraic geometry. Kleshchev describes a new approach to the subject, based on the recent work of Lascoux, Leclerc, Thibon, Ariki, Grojnowski, Brundan, and the author. Much of this work has only appeared in the research literature before. However, to make it accessible to graduate students, the theory is developed from scratch, the only prerequisite being a standard course in abstract.
|
505 |
0 |
0 |
|g 1.
|t Notation and generalities --
|g 2.
|t Symmetric groups I --
|g 3.
|t Degenerate affine Hecke algebra --
|g 4.
|t First results on H[subscript n]-modules --
|g 5.
|t Crystal operators --
|g 6.
|t Character calculations --
|g 7.
|t Integral representations and cyclotomic Hecke algebras --
|g 8.
|t Functors e[subscript i][superscript [lambda]] and f[subscript i][superscript [lambda]] --
|g 9.
|t Construction of U[subscript z][superscript +] and irreducible modules --
|g 10.
|t Identification of the crystal --
|g 11.
|t Symmetric groups II --
|g 12.
|t Generalities on superalgebra --
|g 13.
|t Sergeev superalgebras --
|g 14.
|t Affine Sergeev superalgebras --
|g 15.
|t Integral representations and cyclotomic Sergeev algebras --
|g 16.
|t First results on X[subscript n]-modules --
|g 17.
|t Crystal operators for X[subscript n] --
|g 18.
|t Character calculations for X[subscript n] --
|g 19.
|t Operators e[subscript i][superscript [lambda]] and f[subscript i][superscript [lambda]] --
|g 20.
|t Construction of U[subscript z][superscript +] and irreducible modules --
|g 21.
|t Identification of the crystal --
|g 22.
|t Double covers.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Linear algebraic groups.
|
650 |
|
0 |
|a Representations of groups.
|
650 |
|
0 |
|a Algebras, Linear.
|
650 |
|
0 |
|a Geometry, Projective.
|
650 |
|
0 |
|a Symmetry groups.
|
650 |
|
6 |
|a Groupes linéaires algébriques.
|
650 |
|
6 |
|a Représentations de groupes.
|
650 |
|
6 |
|a Algèbre linéaire.
|
650 |
|
6 |
|a Géométrie projective.
|
650 |
|
6 |
|a Groupes symétriques.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Linear.
|2 bisacsh
|
650 |
0 |
7 |
|a Representations of groups.
|2 cct
|
650 |
0 |
7 |
|a Algebras, Linear.
|2 cct
|
650 |
0 |
7 |
|a Geometry, Projective.
|2 cct
|
650 |
0 |
7 |
|a Symmetry groups.
|2 cct
|
650 |
0 |
7 |
|a Linear algebraic groups.
|2 cct
|
650 |
|
7 |
|a Algebras, Linear
|2 fast
|
650 |
|
7 |
|a Geometry, Projective
|2 fast
|
650 |
|
7 |
|a Linear algebraic groups
|2 fast
|
650 |
|
7 |
|a Representations of groups
|2 fast
|
650 |
|
7 |
|a Symmetry groups
|2 fast
|
650 |
|
7 |
|a Symmetrische Gruppe
|2 gnd
|
650 |
|
7 |
|a Darstellung
|g Mathematik
|2 gnd
|
776 |
0 |
8 |
|i Print version:
|a Kleshchëv, A.S. (Aleksandr Sergeevich).
|t Linear and projective representations of symmetric groups.
|d Cambridge : Cambridge University Press, 2005
|z 0521837030
|w (OCoLC)58556088
|
830 |
|
0 |
|a Cambridge tracts in mathematics ;
|v 163.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138962
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n linearprojective0000kles
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13422858
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37559466
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4949560
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10429142
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 138962
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 41575
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2301942
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3275858
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7036580
|
994 |
|
|
|a 92
|b IZTAP
|