|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocm60326655 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
050509s2003 enka ob 100 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCL
|d OCLCQ
|d YDXCP
|d OCLCQ
|d AU@
|d E7B
|d OCLCQ
|d IDEBK
|d OCLCQ
|d CAMBR
|d COO
|d OL$
|d NLGGC
|d DEBSZ
|d OCLCQ
|d OCLCF
|d EBLCP
|d AUD
|d OCL
|d OCLCQ
|d OCLCA
|d OCLCQ
|d VTS
|d AGLDB
|d REC
|d G3B
|d STF
|d OCLCQ
|d UIU
|d OCLCQ
|d UKSSU
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 271789982
|a 761647099
|a 846253899
|
020 |
|
|
|a 0511065647
|q (electronic bk.)
|
020 |
|
|
|a 9780511065644
|q (electronic bk.)
|
020 |
|
|
|a 9780511542817
|q (electronic bk.)
|
020 |
|
|
|a 051154281X
|q (electronic bk.)
|
020 |
|
|
|a 9780521540131
|
020 |
|
|
|a 0521540135
|
020 |
|
|
|a 9780511067778
|
020 |
|
|
|a 0511067771
|
020 |
|
|
|z 0521540135
|q (Paper)
|
029 |
1 |
|
|a AU@
|b 000042833047
|
029 |
1 |
|
|a AU@
|b 000051376430
|
029 |
1 |
|
|a AU@
|b 000062616048
|
029 |
1 |
|
|a DEBBG
|b BV043147818
|
029 |
1 |
|
|a DEBSZ
|b 379324164
|
029 |
1 |
|
|a DEBSZ
|b 422360724
|
035 |
|
|
|a (OCoLC)60326655
|z (OCoLC)271789982
|z (OCoLC)761647099
|z (OCoLC)846253899
|
050 |
|
4 |
|a QA331
|b .K614 2003eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.3
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Kleinian groups and hyperbolic 3-manifolds :
|b proceedings of the Warwick Workshop, September 11-14, 2001 /
|c edited by Y. Komori, V. Markovic, C. Series.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2003.
|
300 |
|
|
|a 1 online resource (vii, 384 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 299
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds.
|
505 |
8 |
|
|a 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction.
|
505 |
8 |
|
|a 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nœuds.
|
505 |
8 |
|
|a Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry.
|
505 |
8 |
|
|a 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold.
|
505 |
8 |
|
|a 3.3. Volume of the Borromean rings cone-manifold.
|
520 |
|
|
|a Collection of papers summarising the state of the art. Ideal for graduate students or established researchers.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Kleinian groups
|v Congresses.
|
650 |
|
0 |
|a Three-manifolds (Topology)
|v Congresses.
|
650 |
|
0 |
|a Geometry, Hyperbolic
|v Congresses.
|
650 |
|
6 |
|a Groupes de Klein
|v Congrès.
|
650 |
|
6 |
|a Variétés topologiques à 3 dimensions
|v Congrès.
|
650 |
|
6 |
|a Géométrie hyperbolique
|v Congrès.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Hyperbolic
|2 fast
|
650 |
|
7 |
|a Kleinian groups
|2 fast
|
650 |
|
7 |
|a Three-manifolds (Topology)
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
700 |
1 |
|
|a Komori, Yōhei,
|d 1966-
|
700 |
1 |
|
|a Markovic, V.
|q (Vladimir)
|
700 |
1 |
|
|a Series, Caroline.
|
776 |
0 |
8 |
|i Print version:
|t Kleinian groups and hyperbolic 3-manifolds.
|d Cambridge ; New York : Cambridge University Press, 2003
|z 0521540135
|w (DLC) 2004273945
|w (OCoLC)52828967
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 299.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13422859
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL802963
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10429068
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 120517
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 41481
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7656755
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7251221
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3275859
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2301331
|
994 |
|
|
|a 92
|b IZTAP
|