Cargando…

Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 /

Collection of papers summarising the state of the art. Ideal for graduate students or established researchers.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Komori, Yōhei, 1966-, Markovic, V. (Vladimir), Series, Caroline
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2003.
Colección:London Mathematical Society lecture note series ; 299.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm60326655
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 050509s2003 enka ob 100 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCL  |d OCLCQ  |d YDXCP  |d OCLCQ  |d AU@  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d CAMBR  |d COO  |d OL$  |d NLGGC  |d DEBSZ  |d OCLCQ  |d OCLCF  |d EBLCP  |d AUD  |d OCL  |d OCLCQ  |d OCLCA  |d OCLCQ  |d VTS  |d AGLDB  |d REC  |d G3B  |d STF  |d OCLCQ  |d UIU  |d OCLCQ  |d UKSSU  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 271789982  |a 761647099  |a 846253899 
020 |a 0511065647  |q (electronic bk.) 
020 |a 9780511065644  |q (electronic bk.) 
020 |a 9780511542817  |q (electronic bk.) 
020 |a 051154281X  |q (electronic bk.) 
020 |a 9780521540131 
020 |a 0521540135 
020 |a 9780511067778 
020 |a 0511067771 
020 |z 0521540135  |q (Paper) 
029 1 |a AU@  |b 000042833047 
029 1 |a AU@  |b 000051376430 
029 1 |a AU@  |b 000062616048 
029 1 |a DEBBG  |b BV043147818 
029 1 |a DEBSZ  |b 379324164 
029 1 |a DEBSZ  |b 422360724 
035 |a (OCoLC)60326655  |z (OCoLC)271789982  |z (OCoLC)761647099  |z (OCoLC)846253899 
050 4 |a QA331  |b .K614 2003eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.3  |2 22 
049 |a UAMI 
245 0 0 |a Kleinian groups and hyperbolic 3-manifolds :  |b proceedings of the Warwick Workshop, September 11-14, 2001 /  |c edited by Y. Komori, V. Markovic, C. Series. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2003. 
300 |a 1 online resource (vii, 384 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 299 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds. 
505 8 |a 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction. 
505 8 |a 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nœuds. 
505 8 |a Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry. 
505 8 |a 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold. 
505 8 |a 3.3. Volume of the Borromean rings cone-manifold. 
520 |a Collection of papers summarising the state of the art. Ideal for graduate students or established researchers. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Kleinian groups  |v Congresses. 
650 0 |a Three-manifolds (Topology)  |v Congresses. 
650 0 |a Geometry, Hyperbolic  |v Congresses. 
650 6 |a Groupes de Klein  |v Congrès. 
650 6 |a Variétés topologiques à 3 dimensions  |v Congrès. 
650 6 |a Géométrie hyperbolique  |v Congrès. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Geometry, Hyperbolic  |2 fast 
650 7 |a Kleinian groups  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Komori, Yōhei,  |d 1966- 
700 1 |a Markovic, V.  |q (Vladimir) 
700 1 |a Series, Caroline. 
776 0 8 |i Print version:  |t Kleinian groups and hyperbolic 3-manifolds.  |d Cambridge ; New York : Cambridge University Press, 2003  |z 0521540135  |w (DLC) 2004273945  |w (OCoLC)52828967 
830 0 |a London Mathematical Society lecture note series ;  |v 299. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13422859 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL802963 
938 |a ebrary  |b EBRY  |n ebr10429068 
938 |a EBSCOhost  |b EBSC  |n 120517 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 41481 
938 |a YBP Library Services  |b YANK  |n 7656755 
938 |a YBP Library Services  |b YANK  |n 7251221 
938 |a YBP Library Services  |b YANK  |n 3275859 
938 |a YBP Library Services  |b YANK  |n 2301331 
994 |a 92  |b IZTAP