Cargando…

The quantum classical theory /

This book describes mixed classical and quantum theories of dynamical processes with a particular emphasis on molecular collisions. Purely quantum or purely classical approaches are inadequate for many systems. The quantum classical theory is important to conduct practical calculations involving rea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Billing, Gert D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Oxford University Press, 2003.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Abbreviations
  • 1 Introduction
  • 2 Rigorous theories
  • 2.1 Path-integral approach
  • 2.1.1 The short time propagator
  • 2.1.2 The classical limit
  • 2.1.3 The Van Vleck propagator
  • 2.2 Gaussians at work
  • 2.2.1 Cellular dynamics
  • 2.2.2 A semi-classical IVR propagator
  • 2.3 An orthorgonal basis set
  • 2.4 Bohmian mechanics
  • 2.5 Mixing of Gauss-Hermite and ordinary basis sets
  • 2.5.1 The classical path approximation
  • 2.5.2 The exact equations of motion in the TDGH basis
  • 2.6 Bound states and Gauss-Hermite functions.
  • 2.6.1 The Morse-oscillator in a Gauss-Hermite basis
  • 2.6.2 Treatment of 2D systems in the G-H basis
  • 2.6.3 The quantum-classical correlation
  • 2.6.4 Spherical harmonics in a Gauss-Hermite basis set
  • 2.7 Second quantization and Gauss-Hermite functions
  • 2.8 Quantum dressed classical mechanics
  • 2.8.1 The DVR scheme
  • 2.8.2 Arbitrarily sized systems
  • 2.9 The MCTDH approach
  • 2.10 Summary
  • 3 Approximate theories
  • 3.1 Time-dependent SCF
  • 3.2 The classical path theory
  • 3.2.1 Relation to other theories
  • 3.2.2 Energy transfer
  • 3.2.3 The V[sub(q)]R[sub(q)]T[sub(c)] method.
  • 3.2.4 The V[sub(q)]R[sub(c)]T[sub(c)] method
  • 3.2.5 The V[sub(q)]R[sub(c)]T[sub(c)] method for diatom-diatom collisions
  • 3.2.6 Reactive scattering
  • 3.2.7 Summary
  • 3.3 Non-adiabatic transitions
  • 3.3.1 Pechukas theory
  • 3.3.2 Tully's approach
  • 3.3.3 Spawning method
  • 3.3.4 The multi-trajectory and TDGH-DVR methods
  • 4 Second quantization
  • 4.1 Diatom-diatom collisions
  • 4.2 General hamiltonians
  • 5 More complex systems
  • 5.1 Potential energy surfaces
  • 5.1.1 The Born-Oppenheimer separation
  • 5.1.2 Approximate interaction potentials
  • 5.2 Polyatomic molecules.
  • 5.2.1 Second quantization solution for U
  • 5.2.2 The classical degrees of freedom
  • 5.2.3 Rate-constants
  • 5.2.4 Some case studies
  • 5.3 Chemical processes at surfaces
  • 5.4 Reaction path methods
  • 5.4.1 Surface characteristics
  • 5.4.2 The reaction path method
  • 5.4.3 Reaction path constraints
  • 5.4.4 Absolute rate-constants
  • 5.4.5 Second quantization approach
  • 5.4.6 Initialization of the reaction path dynamics
  • 5.4.7 Cross sections and rate-constants
  • 5.5 The reaction volume approach
  • 5.5.1 A simplified hamiltonian
  • 5.6 Summary.
  • 5.7 Chemical processes in clusters and solution
  • 5.7.1 Centroid molecular dynamics
  • 6 Conclusion
  • Appendices
  • Bibliography
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • P
  • Q
  • R
  • S
  • T
  • V
  • W.