The quantum classical theory /
This book describes mixed classical and quantum theories of dynamical processes with a particular emphasis on molecular collisions. Purely quantum or purely classical approaches are inadequate for many systems. The quantum classical theory is important to conduct practical calculations involving rea...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Oxford University Press,
2003.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Abbreviations
- 1 Introduction
- 2 Rigorous theories
- 2.1 Path-integral approach
- 2.1.1 The short time propagator
- 2.1.2 The classical limit
- 2.1.3 The Van Vleck propagator
- 2.2 Gaussians at work
- 2.2.1 Cellular dynamics
- 2.2.2 A semi-classical IVR propagator
- 2.3 An orthorgonal basis set
- 2.4 Bohmian mechanics
- 2.5 Mixing of Gauss-Hermite and ordinary basis sets
- 2.5.1 The classical path approximation
- 2.5.2 The exact equations of motion in the TDGH basis
- 2.6 Bound states and Gauss-Hermite functions.
- 2.6.1 The Morse-oscillator in a Gauss-Hermite basis
- 2.6.2 Treatment of 2D systems in the G-H basis
- 2.6.3 The quantum-classical correlation
- 2.6.4 Spherical harmonics in a Gauss-Hermite basis set
- 2.7 Second quantization and Gauss-Hermite functions
- 2.8 Quantum dressed classical mechanics
- 2.8.1 The DVR scheme
- 2.8.2 Arbitrarily sized systems
- 2.9 The MCTDH approach
- 2.10 Summary
- 3 Approximate theories
- 3.1 Time-dependent SCF
- 3.2 The classical path theory
- 3.2.1 Relation to other theories
- 3.2.2 Energy transfer
- 3.2.3 The V[sub(q)]R[sub(q)]T[sub(c)] method.
- 3.2.4 The V[sub(q)]R[sub(c)]T[sub(c)] method
- 3.2.5 The V[sub(q)]R[sub(c)]T[sub(c)] method for diatom-diatom collisions
- 3.2.6 Reactive scattering
- 3.2.7 Summary
- 3.3 Non-adiabatic transitions
- 3.3.1 Pechukas theory
- 3.3.2 Tully's approach
- 3.3.3 Spawning method
- 3.3.4 The multi-trajectory and TDGH-DVR methods
- 4 Second quantization
- 4.1 Diatom-diatom collisions
- 4.2 General hamiltonians
- 5 More complex systems
- 5.1 Potential energy surfaces
- 5.1.1 The Born-Oppenheimer separation
- 5.1.2 Approximate interaction potentials
- 5.2 Polyatomic molecules.
- 5.2.1 Second quantization solution for U
- 5.2.2 The classical degrees of freedom
- 5.2.3 Rate-constants
- 5.2.4 Some case studies
- 5.3 Chemical processes at surfaces
- 5.4 Reaction path methods
- 5.4.1 Surface characteristics
- 5.4.2 The reaction path method
- 5.4.3 Reaction path constraints
- 5.4.4 Absolute rate-constants
- 5.4.5 Second quantization approach
- 5.4.6 Initialization of the reaction path dynamics
- 5.4.7 Cross sections and rate-constants
- 5.5 The reaction volume approach
- 5.5.1 A simplified hamiltonian
- 5.6 Summary.
- 5.7 Chemical processes in clusters and solution
- 5.7.1 Centroid molecular dynamics
- 6 Conclusion
- Appendices
- Bibliography
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- K
- L
- M
- N
- P
- Q
- R
- S
- T
- V
- W.