Cargando…

Direct nuclear reactions /

Annotation.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Glendenning, Norman K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. : World Scientific, ©2004.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • Acknowledgments
  • Notational Conventions
  • 1. Introduction: Direct and Compound Nuclear Reactions
  • A. The Observables
  • B. Direct and Compound Nuclear Reactions
  • C. Competition between Direct and Compound Nuclear Reactions
  • D. Historical Note
  • 2. The Plane-Wave Theory
  • Notes to Chapter 2
  • 3. Scattering Theory and General Results
  • A. Motivation
  • B. The Nuclear Shell Model
  • C. Reaction Channels or Partitions
  • D. Integral Equations and the Scattering Amplitude
  • E. Asymptotic Form of the Complete Wave Function
  • F. The First Born Approximation
  • G. Cross Section
  • Notes to Chapter 3
  • 4. The Phenomenological Optical Potential
  • A. Rationale for the Optical Potential
  • B. Partial Wave Expansion, the Radial Wave Function, Its Asymptotic Behavior
  • C. Elastic Scattering Amplitude
  • D. Coulomb and Nuclear Potentials
  • E. Parametrization of the Optical Potential
  • F. Elastic Scattering of Alpha Particles
  • G. SpinOrbit Interaction and Nucleon Elastic Scattering
  • H. Elastic Scattering of Heavy Ions
  • I. The Imaginary Potential and Mean Free Path
  • J. Systematics of the Parameters
  • K. Nonlocality of the Optical Potential
  • L. Convergence of the Partial Wave Sum
  • Notes to Chapter 4
  • 5. Distorted-Wave Born Approximation
  • A. Introduction
  • B. Distorted-Wave Greens Functions
  • C. The Gell-MannGoldberger Transformation
  • D. Two-Potential Formula
  • E. The DWBA Transition Amplitude
  • F. Discussion of the Approximations
  • G. Antisymmetrization
  • H. Multipole Expansion of the Transition Amplitude
  • Notes to Chapter 5
  • 6. Operator Formalism
  • A. Introduction
  • B. LippmannSchwinger Equation
  • C. Formal Solution
  • D. Transition Amplitude
  • E. Transition Operator T
  • F. Gell-MannGoldberger Transformation
  • G. Distorted-Wave Greens Function
  • H. Distorted-Wave Born Approximation
  • I. Second Distorted-Born Approximation
  • J. Multiple-Scattering Series of Watson
  • K. Greens Theorem and the Hermitian H
  • Notes of Chapter 6
  • 7. Calculation of the DWBA Amplitude
  • A. Introduction
  • B. The (d, p) Stripping Reaction
  • C. Zero-Range Approximation
  • D. Examples
  • E. Improvements within the Framework of the DWBA
  • F. Spectroscopic Factors for One-Nucleon Transfer
  • G. Pairing Theory in Nuclear Structure
  • H. Inelastic Excitation of Surface Vibrations
  • I. Inelastic Excitation of Nuclear Rotational Levels
  • J. Inelastic Excitation of Single-Nucleon States
  • K. Charge-Exchange Reactions
  • L. Distorted-Wave Impulse Approximation
  • M. Coulomb Excitation
  • Notes to Chapter 7
  • 8. Coupled Equations and the Effective Interaction
  • A. Coupled Equations for Inelastic Scattering
  • B. Truncation and Effective Interactions
  • C. The Effective Interaction
  • D. Nonlocality
  • E. Multiple-Scattering Series for the Effective Interaction
  • F. Partial-Wave Expansion
  • G. Boundary Conditions
  • H. Distorted-Wave Born Approximation
  • I. Cross Sections
  • 9. Microscopic Theory of Inelastic Nucleon Scattering from Nuclei
  • A. The Richness of Nuclear Structure
  • B. Discussion of the Interactions in the Coupled Equations
  • C. Matrix Elements of the Effective Interaction
  • D. Selection.