Tabla de Contenidos:
  • ULTRAFAST CHEMICAL SEPARATIONS
  • Copyright
  • FOREWORD
  • PREFACE
  • Contents
  • PART I SEPARATION TECHNIQUES
  • 1 Introduction
  • 2 BATCH PROCESSES
  • 2.1 PRECIPITATION
  • 2.2 ADSORPTION AND ISOTOPIC EXCHANGE
  • 2.2.1 Adsorption
  • 2.2.2 Adsorption of Ions and Exchanges
  • 2.3 ION-EXCHANGE TECHNIQUES
  • 2.3.1 Principle
  • 2.3.2 Application to Fast Radiochemical Separations
  • 2.4 LIQUID-LIQUID EXTRACTION
  • 2.4.1 Systems in Use
  • 2.4.2 Application to Ultrafast Separations
  • 2.5 HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY
  • 2.5.1 Principle
  • 2.5.2 Separation of Lanthanides2.5.3 Separation of Other Elements
  • 2.6 DISTILLATION AND VOLATILIZATION
  • 2.6.1 Applications
  • 2.7 THERMOCHROMATOGRAPHY
  • 2.7.1 Principle
  • 2.7.2 Specific Cases
  • 2.8 ELECTROPHORESIS
  • 3. AUTOMATED PROCESSES
  • 3.1 COMPARISON OF EFFICIENCIES OF AUTOBATCH AND CONTINUOUS PROCESSES
  • 4. AUTOBATCH TECHNIQUES
  • 4.1 AUTOBATCH TECHNIQUES FOR THE SEPARATION OF SILVER ISOTOPES
  • 4.2 TECHNETIUM BY SOLVENT EXTRACTION
  • 4.3 PALLADIUM BY SOLVENT EXTRACTION
  • 4.4 ARSENIC AND ANTIMONY BY VOLATILE-HYDRIDE PRODUCTION
  • 4.5 AUTOBATCH SEPARATION OF INDIVIDUAL LANTHANIDE FISSION PRODUCTS4.6 SEPARATION OF TRANSPLUTONIUM ELEMENTS
  • 5. DELIVERY SYSTEMS FOR CONTINUOUS TECHNIQUES
  • 5.1 GAS-JET SYSTEMS
  • 5.1.1 Role of Aerosols
  • 5.1.2 Techniques of Aerosol Production
  • 5.1.3 Types of Aerosols
  • 5.2 TRANSPORT TIME
  • 5.3 EXAMPLES OF GAS-JET SYSTEMS
  • 6. CONTINUOUS LIQUID-PHASE CHEMICAL SEPARATIONS
  • 6.1 HIGH-SPEED CENTRIFUGE FOR PHASE SEPARATION
  • 6.2 TRANSFER FROM GAS-JET SYSTEM TO AQUEOUS PHASE
  • 6.3 EXAMPLES
  • 6.3.1 Arsenic
  • 6.3.2 Zirconium and Niobium
  • 6.3.3 Lanthanum6.3.4 Technetium
  • 7. CONTINUOUS GAS-PHASE CHEMISTRY
  • 7.1 PRODUCTION OUTSIDE THE TARGET CHAMBER
  • 7.2 PRODUCTION IN THE TARGET CHAMBER
  • 8. FUTURE OF ULTRAFAST CHEMISTRY
  • 9. REFERENCES
  • PART II INDIVIDUAL SEPARATION PROCEDURES BY ELEMENT
  • 1 Introduction
  • 2 Procedures by Element