Cargando…

New developments in categorical data analysis for the social and behavioral sciences /

A collection of studies on modern categorical data analysis methods, emphasizing their application to relevant and interesting datasets. A prominent breakthrough in categorical data analysis is the development and use of latent variable models.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ark, L. Andries van der, Croon, Marcel A., Sijtsma, K. (Klaas), 1955-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Mahwah, N.J. : L. Erlbaum Associates, ©2005.
Colección:Quantitative methodology series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Statistical models for categorical variables / L. Andries van der Ark, Marcel A. Croon, and Klaas Sijtsma
  • Misclassification phenomena in categorical data analysis : regression toward the mean and tendency toward the mode / Jacques A. Hagenaars
  • Factor analysis with categorical indicators : a comparison between traditional and latent class approaches / Jeroen K. Vermunt and Jay Magidson
  • Bayesian computational methods for inequality constrained latent class analysis / Olav Laudy, Jan Boom, and Herbert Hoijtink
  • Analyzing categorical data by marginal models / Wicher P. Bergsma and Marcel A. Croon
  • Computational aspects of the E-M and Bayesian estimation in latent variable models / Irini Moustaki and Martin Knott
  • Logistic models for single-subject time series / Peter W. van Rijn and Peter C.M. Molenaar
  • The effect of missing data imputation on Mokken scale analysis / L. Andrew van der Ark and Klaas Sijtsma
  • Building IRT models from scratch : graphical models, exchangeability, marginal freedom, scale types, and latent traits / Henk Kelderman
  • The Nedlesky model for multiple-choice items / Timo M. Bechger [and others]
  • Application of the polytomous saltus model to stage-like proportional reasoning data / Karen Draney and Mark Wilson
  • Multilevel IRT model assessment / Jean-Paul Fox.