Cargando…

Structure and bonding in crystalline materials /

"One of the motivating questions in materials research today is: how can elements be combined to produce a solid with specified properties? One part of the answer to this question lies in the fundamental relationship between the composition, structure and bonding in crystalline materials. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rohrer, Gregory S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2001.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • B. Periodic trends in atomic properties 2
  • C. Bonding generalizations based on periodic trends in the electronegativity 4
  • D. Generalizations about crystal structures based on periodicity 12
  • E. Limitations of simple models 21
  • 2. Basic Structural Concepts 29
  • B. Bravais lattice 29
  • C. Unit cell 41
  • D. Crystal structure. A Bravais lattice plus a basis 44
  • E. Specifying locations, planes and directions in a crystal 46
  • F. Reciprocal lattice 50
  • G. Quantitative calculations involving the geometry of the lattice 56
  • H. Visual representations of crystal structures 59
  • I. Polycrystallography 69
  • 3. Symmetry in Crystal Structures 88
  • B. Symmetry operators 88
  • C. 32 distinct crystallographic point groups 92
  • D. 230 space groups 105
  • E. Interpretation of conventional crystal structure data 121
  • 4. Crystal Structures 135
  • B. Close packed arrangements 135
  • C. Interstitial sites 140
  • D. Naming crystal structures 143
  • E. Classifying crystal structures 145
  • F. Important prototype structures 147
  • G. Interstitial compounds 177
  • H. Laves phases 179
  • I. Superlattice structures and complex stacking sequences 182
  • J. Extensions of the close packing description to more complex structures 188
  • K. Van der Waals solids 190
  • L. Noncrystalline solid structures 191
  • 5. Diffraction 205
  • B. Bragg's formulation of the diffraction condition 205
  • C. Scattering of X-rays from a periodic electron density 206
  • D. Relationship between diffracted peak intensities and atomic positions 218
  • E. Factors affecting the intensity of diffracted peaks 232
  • F. Selected diffraction techniques and their uses 242
  • 6. Secondary Bonding 263
  • B. A physical model for the van der Waals bond 267
  • C. Dipolar and hydrogen bonding 278
  • D. Use of pair potentials in empirical models 280
  • 7. Ionic Bonding 286
  • B. A physical model for the ionic bond 289
  • C. Other factors that influence cohesion in ionic systems 302
  • D. Predicting the structures of ionic compounds 308
  • E. Electronegativity scales 313
  • F. Correlation of physical models with the phenomenological trends 317
  • G. Pair potential calculations of defect properties in ionic compounds 318
  • 8. Metallic Bonding 326
  • B. A physical model for the metallic bond: free electron theory 328
  • C. Failures of the free electron theory 348
  • D. Electrons in a periodic lattice 348
  • E. Correlation of the physical models with the phenomenological trends 357
  • F. Empirical potentials for calculating the properties of defects in metals 357
  • 9. Covalent Bonding 363
  • B. A physical model for the covalent bond in a molecule 367
  • C. A physical model for the covalent bond in a homopolar crystal 376
  • D. A physical model for the covalent bond in a polar crystal 385
  • E. Bands deriving from d-electrons 401
  • F. Distinction between metals and non-metals 406
  • G. Distinction between covalent and ionic solids 407
  • H. Cohesive energy of a covalently bonded solid 410
  • I. Overview of the LCAO model and correlation with phenomenological trends 412
  • J. Bandgap 414
  • 10. Models for Predicting Phase Stability and Structure 424
  • B. Models for predicting phase stability 425
  • C. Factors that determine structure in polar-covalent crystals 440
  • D. Structure stability diagrams 461
  • Appendix 1A Crystal and univalent radii 477
  • Appendix 2A Computing distances using the metric tensor 480
  • Appendix 2B Computing unit cell volumes 482
  • Appendix 2C Computing interplanar spacings 483
  • Appendix 3A 230 space groups 485
  • Appendix 3B Selected crystal structure data 488
  • Appendix 5A Introduction to Fourier series 512
  • Appendix 5B Coefficients for atomic scattering factors 515
  • Appendix 7A Evaluation of the MadelungS constant 518
  • Appendix 7B Ionic radii for halides and chalcogenides 521
  • Appendix 7C Pauling electronegativities 526
  • Appendix 9A Cohesive energies and band gap data 527
  • Appendix 9B Atomic orbitals and the electronic structure of the atom 529.