Cargando…

Linear models : a mean model approach /

Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vect...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Moser, Barry Kurt
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Academic Press, ©1996.
Colección:Probability and mathematical statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm54379581
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 040209s1996 cau obs 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d TNF  |d OPELS  |d IDEBK  |d NRU  |d E7B  |d TULIB  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCF  |d UKDOC  |d OCLCQ  |d COO  |d OCLCQ  |d AGLDB  |d PIFBR  |d OCLCQ  |d WY@  |d LUE  |d STF  |d D6H  |d VTS  |d NLE  |d TOF  |d OCLCQ  |d UKMGB  |d LEAUB  |d M8D  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBB739176  |2 bnb 
016 7 |a 017581985  |2 Uk 
019 |a 162128660  |a 171131940  |a 648266294  |a 779919969 
020 |a 058549214X  |q (electronic bk.) 
020 |a 9780585492148  |q (electronic bk.) 
020 |a 9780125084659 
020 |a 012508465X 
020 |a 0080510299 
020 |a 9780080510293 
029 1 |a AU@  |b 000048129437 
029 1 |a AU@  |b 000050767846 
029 1 |a AU@  |b 000051562986 
029 1 |a CHDSB  |b 005988890 
029 1 |a CHNEW  |b 001004652 
029 1 |a DEBBG  |b BV036962205 
029 1 |a DEBBG  |b BV042317217 
029 1 |a DEBBG  |b BV043168996 
029 1 |a DEBSZ  |b 275246698 
029 1 |a DEBSZ  |b 42241218X 
029 1 |a DKDLA  |b 820120-katalog:9910110457905765 
029 1 |a NZ1  |b 12433957 
029 1 |a NZ1  |b 15192798 
029 1 |a UKMGB  |b 017581985 
035 |a (OCoLC)54379581  |z (OCoLC)162128660  |z (OCoLC)171131940  |z (OCoLC)648266294  |z (OCoLC)779919969 
037 |a 77293:77293  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA279  |b .M685 1996eb 
072 7 |a MAT  |x 029020  |2 bisacsh 
082 0 4 |a 519.5/35  |2 22 
049 |a UAMI 
100 1 |a Moser, Barry Kurt. 
245 1 0 |a Linear models :  |b a mean model approach /  |c Barry Kurt Moser. 
260 |a San Diego :  |b Academic Press,  |c ©1996. 
300 |a 1 online resource (xii, 228 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Probability and mathematical statistics 
504 |a Includes bibliographical references (pages 221-223) and index. 
588 0 |a Print version record. 
505 0 |a Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X(+ E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of (and (<+>2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H(= h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = (<+>2I<->n. Estimable Functions. Mean Model Analysis When cov(E) = (<+>2V. The General Mixed Model: The Mixed Model Structure and Assumptions. Random Portion Analysis: Type I Sumof Squares Method. Random Portion Analysis: Restricted Maximum Likelihood Method. Random Portion Analysis: A Numerical Example. Fixed Portion Analysis. Fixed Portion Analysis: A Numerical Example. Appendixes. References. Subject Index. 
520 |a Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory. Key Features * Provides a versatile format for investigating linear model theory, using the mean model * Uses examples that are familiar to the student: * design of experiments, analysis of variance, regression, and normal distribution theory * Includes a review of relevant linear algebra concepts * Contains fully worked examples which follow the theorem/proof presentation. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Linear models (Statistics) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Multivariate Analysis.  |2 bisacsh 
650 7 |a Linear models (Statistics)  |2 fast 
650 1 7 |a Lineaire modellen.  |2 gtt 
650 7 |a Modèles linéaires (statistique)  |2 ram 
650 7 |a Moyenne.  |2 ram 
650 7 |a Formes quadratiques.  |2 ram 
650 7 |a Analyse de régression  |x Moindres carrés.  |2 ram 
650 7 |a Statistique mathématique.  |2 ram 
650 7 |a Estimation, Théorie de l'.  |2 ram 
650 7 |a Programmation (mathématiques)  |2 ram 
653 0 |a Statistical analysis 
776 0 8 |i Print version:  |a Moser, Barry Kurt.  |t Linear models.  |d San Diego : Academic Press, ©1996  |z 012508465X  |w (DLC) 96033930  |w (OCoLC)34321626 
830 0 |a Probability and mathematical statistics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91180  |z Texto completo 
938 |a 123Library  |b 123L  |n 35697 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL300584 
938 |a EBSCOhost  |b EBSC  |n 91180 
938 |a YBP Library Services  |b YANK  |n 2336970 
938 |a YBP Library Services  |b YANK  |n 2613960 
994 |a 92  |b IZTAP