Magnetism in condensed matter /
An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order paramete...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Oxford University Press,
2001.
|
Colección: | Oxford master series in condensed matter physics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism.
- 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy.
- 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet.
- 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2).
- 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation.