NMR imaging of materials /
Written for graduates, scientists and engineers, 'NMR Imaging of Materials' provides an introduction to a growing field. A large number of applications in basic research and quality control are now possible using NMR techniques.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford : New York :
Clarendon Press ; Oxford University Press,
2000.
|
Colección: | Monographs on the physics and chemistry of materials ;
57. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; Contents; List of symbols and abbreviations; 1 Introduction; 1.1 Nuclear magnetic resonance; 1.1.1 NMR and the spinning top; 1.1.2 NMR spectroscopy; 1.1.3 NMR imaging; 1.1.4 NMR imaging in biomedicine; 1.1.5 Contrast in NMR imaging; 1.1.6 NMR imaging in materials science; 1.1.7 Equipment; 1.2 About this book; 1.2.1 The NMR signal in the presence of slow molecular motion; 1.2.2 Literature; 1.2.3 The contents of this book; 2 Fundamentals; 2.1 Magnetic fields; 2.1.1 Homogeneous magnetic fields; 2.1.2 Magnetic-field gradients; 2.2 Principles of NMR; 2.2.1 An NMR primer
- 2.2.2 Spin-system response from quantum mechanics2.3 Hardware; 2.3.1 Overview of basic components; 2.3.2 The magnet; 2.3.3 The transmitter side; 2.3.4 The receiver side; 3 NMR spectroscopy; 3.1 Anisotropic nuclear spin interactions; 3.1.1 Interaction Hamiltonians; 3.1.2 General formalism; 3.1.3 Strong magnetic fields; 3.1.4 Orientation dependence of the resonance frequency; 3.2 Wideline NMR; 3.2.1 Molecular order; 3.2.2 Molecular reorientation; 3.3 High-resolution solid-state NMR; 3.3.1 Cross-polarization; 3.3.2 High-power decoupling; 3.3.3 Sample spinning; 3.3.4 Multi-pulse methods
- 3.4 Echoes3.5 Relaxation; 3.5.1 Liquids; 3.5.2 Solids and slow motion; 3.5.3 Spin diffusion; 4 Transformation, convolution, and correlation; 4.1 Fourier transformation; 4.2 Convolution; 4.2.1 Linear systems; 4.2.2 Nonlinear systems; 4.2.3 The convolution theorem; 4.3 Correlation; 4.3.1 Linear system analysis; 4.3.2 Nonlinear cross-correlation; 4.3.3 The correlation theorem; 4.4 Further transformations; 4.4.1 Laplace transformation; 4.4.2 Hankel transformation; 4.4.3 Abel transformation; 4.4.4 z transformation; 4.4.5 Hadamard transformation; 4.4.6 Wavelet transformation
- 6.2 Fourier imaging6.2.1 The spin-warp technique; 6.2.2 Multi-slice imaging; 6.2.3 3D imaging; 6.2.4 Spectroscopic imaging; 6.2.5 Stimulated-echo imaging; 6.2.6 Imaging with CPMG echoes; 6.2.7 Gradient-echo imaging; 6.2.8 Ultra-fast imaging; 6.3 Imaging in the rotating frame; 6.4 Imaging with noise excitation; 7 Contrast; 7.1 Image contrast; 7.1.1 Optimization of contrast; 7.1.2 Magnetization filters: parameter weights; 7.1.3 Transfer functions and mobility filters; 7.1.4 Parameter contrast; 7.1.5 Contrast parameters; 7.1.6 NMR parameters and material properties; 7.2 Filters