Cargando…

Pattern recognition : from classical to modern approaches /

This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pal, Sankar K., Pal. Amita
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. : World Scientific, 2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm53620267
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 031124s2001 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d E7B  |d OCLCF  |d NLGGC  |d OCLCO  |d OCLCQ  |d MHW  |d EBLCP  |d OCLCQ  |d VTS  |d AGLDB  |d STF  |d M8D  |d UKAHL  |d OCLCQ  |d VLY  |d UKEHC  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 815568140  |a 879025097  |a 1162348252  |a 1200093546  |a 1241925162  |a 1300545295 
020 |a 981238653X  |q (electronic bk.) 
020 |a 9789812386533  |q (electronic bk.) 
020 |a 1281347582 
020 |a 9781281347589 
020 |a 9786611347581 
020 |a 6611347585 
029 1 |a AU@  |b 000049163060 
029 1 |a AU@  |b 000051401102 
029 1 |a DEBBG  |b BV043152479 
029 1 |a DEBSZ  |b 422411191 
029 1 |a GBVCP  |b 801087414 
029 1 |a NZ1  |b 11632319 
035 |a (OCoLC)53620267  |z (OCoLC)815568140  |z (OCoLC)879025097  |z (OCoLC)1162348252  |z (OCoLC)1200093546  |z (OCoLC)1241925162  |z (OCoLC)1300545295 
050 4 |a TK7882.P3  |b P38 2001eb 
072 7 |a COM  |x 047000  |2 bisacsh 
072 7 |a UYQP  |2 bicssc 
082 0 4 |a 006.4  |2 22 
049 |a UAMI 
245 0 0 |a Pattern recognition :  |b from classical to modern approaches /  |c editors, Sankar K. Pal, Amita Pal. 
260 |a River Edge, N.J. :  |b World Scientific,  |c 2001. 
300 |a 1 online resource (xxii, 612 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, "Pattern Recognition: From Classical to Modern Approaches" is a useful resource 
504 |a Includes bibliographical references and index. 
505 0 |a Foreword; Preface; Contents; Chapter 1 PATTERN RECOGNITION: EVOLUTION OF METHODOLOGIES AND DATA MINING; 1.1 Introduction; 1.2 The pattern recognition problem; 1.3 The statistical approach; 1.4 The syntactic approach; 1.5 Classification trees; 1.6 The fuzzy set theoretic approach; 1.7 The connectionist approach; 1.8 Use of genetic algorithms; 1.9 The hybrid approach and soft computing; 1.10 Data mining and knowledge discovery; 1.11 Conclusions; Chapter 2 IMPERFECT SUPERVISION IN STATISTICAL PATTERN RECOGNITION; 2.1 Statistical pattern recognition; 2.2 Preliminaries; 2.3 Unsupervised learning 
505 8 |a 2.4 Models for imperfect supervision2.5 Effect of imperfect supervision; 2.6 Learning with an unreliable supervisor; 2.7 Learning with a stochastic supervisor; Chapter 3 ADAPTIVE STOCHASTIC ALGORITHMS FOR PATTERN CLASSIFICATION; 3.1 Introduction; 3.2 Learning automata; 3.3 A common payoff game of automata for pattern classification; 3.4 Three layer network consisting of teams of automata for pattern classification; 3.5 Modules of learning automata; 3.6 Discussion; Chapter 4 UNSUPERVISED CLASSIFICATION: SOME BAYESIAN APPROACHES; 4.1 Introduction 
505 8 |a 4.2 Finite mixtures of probability distributions4.3 Bayesian approaches for mixture decomposition; 4.4 Discussion; Chapter 5 SHAPE IN IMAGES; 5.1 High-level Bayesian image analysis; 5.2 Prior models for objects; 5.3 Inference; 5.4 Multiple objects and occlusions; 5.5 Warping and image averaging; 5.6 Discussion; Chapter 6 DECISION TREES FOR CLASSIFICATION : A REVIEW AND SOME NEW RESULTS; 6.1 Introduction; 6.2 The different node splitting criteria; 6.3 Pruning; 6.4 Look-ahead; 6.5 Other issues in decision tree construction; 6.6 A new look-ahead criterion: some new results; 6.7 Conclusions 
505 8 |a Chapter 7 SYNTACTIC PATTERN RECOGNITION7.1 Introduction; 7.2 Primitive selection strategies; 7.3 Formal linguistic model: basic definitions and concepts; 7.4 High-dimensional pattern grammars; 7.5 Structural recognition of imprecise patterns; 7.6 Grammatical inference; 7.7 Recognition of ill-formed patterns: error-correcting grammars; Chapter 8 FUZZY SETS AS A LOGIC CANVAS FOR PATTERN RECOGNITION; 8.1 Introduction: fuzzy sets and pattern recognition; 8.2 Fuzzy set-based transparent topologies of the pattern classifier; 8.3 Supervised, unsupervised, and hybrid modes of learning 
505 8 |a 8.4 ConclusionsChapter 9 FUZZY PATTERN RECOGNITION BY FUZZY INTEGRALS AND FUZZY RULES; 9.1 Introduction; 9.2 Classification by fuzzy rules; 9.3 Classification by fuzzy integrals; Chapter 10 NEURAL NETWORK BASED PATTERN RECOGNITION; 10.1 Introduction; 10.2 The essence of pattern recognition; 10.3 Advanced neural network architectures; 10.4 Neural pattern recognition; 10.5 Conclusions; Chapter 11 PATTERN CLASSIFICATION BASED ON QUANTUM NEURAL NETWORKS: A CASE STUDY; 11.1 Introduction; 11.2 Quantum neural networks; 11.3 Wind profilers; 11.4 Formulation of the bird removal problem 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Pattern recognition systems. 
650 2 |a Pattern Recognition, Automated 
650 6 |a Reconnaissance des formes (Informatique) 
650 7 |a COMPUTERS  |x Optical Data Processing.  |2 bisacsh 
650 7 |a Pattern recognition systems  |2 fast 
700 1 |a Pal, Sankar K. 
700 1 |a Pal. Amita. 
776 0 8 |i Print version:  |t Pattern recognition.  |d River Edge, N.J. : World Scientific, 2001  |z 9810246846  |w (OCoLC)49032460 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91476  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21189849 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1681294 
938 |a EBSCOhost  |b EBSC  |n 91476 
938 |a YBP Library Services  |b YANK  |n 2407633 
994 |a 92  |b IZTAP