Cargando…

Regression and time series model selection /

This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semipar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McQuarrie, Allan D. R.
Otros Autores: Tsai, Chih-Ling
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©1998.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm52859244
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030817s1998 si a ob 001 0 eng d
010 |a  98190995  
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d E7B  |d OCLCF  |d OCLCO  |d STF  |d NLGGC  |d OCLCQ  |d S3O  |d VTS  |d AGLDB  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d OCLCO  |d OCLCQ  |d INARC 
015 |a S99-R1337 
016 7 |a 000014283098  |2 AU 
019 |a 1058003236  |a 1086522274  |a 1392123879 
020 |a 9812385452  |q (electronic bk.) 
020 |a 9789812385451  |q (electronic bk.) 
020 |a 981023242X 
020 |a 9789810232429 
024 3 |a 9789810232429 
029 1 |a DEBBG  |b BV043126637 
029 1 |a DEBSZ  |b 422411124 
029 1 |a GBVCP  |b 801057094 
035 |a (OCoLC)52859244  |z (OCoLC)1058003236  |z (OCoLC)1086522274  |z (OCoLC)1392123879 
037 |b DA 
050 4 |a QA278.2  |b .M42 1998eb 
072 7 |a MAT  |x 029030  |2 bisacsh 
082 0 4 |a 519.5/36  |2 22 
049 |a UAMI 
100 1 |a McQuarrie, Allan D. R. 
245 1 0 |a Regression and time series model selection /  |c Allan D.R. McQuarrie, Chih-Ling Tsai. 
260 |a Singapore ;  |a River Edge, N.J. :  |b World Scientific,  |c ©1998. 
300 |a 1 online resource (xxi, 455 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 430-439) and indexes. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Introduction. 1.1. Background. 1.2. Overview. 1.3. Layout. 1.4. Topics not covered -- ch. 2. The univariate regression model. 2.1. Model description. 2.2. Derivations of the foundation model selection criteria. 2.3. Moments of model selection criteria. 2.4. Signal-to-noise corrected variants. 2.5. Overfitting. 2.6. Small-sample underfitting. 2.7. Random X regression and Monte Carlo study. 2.8. Summary -- ch. 3. The univariate autoregressive model. 3.1. Model description. 3.2. Selected derivations of model selection criteria. 3.3. Small-sample signal-to-noise ratios. 3.4. Overfitting. 3.5. Underfitting for two special case models. 3.6. Autoregressive Monte Carlo study. 3.7. Moving average MA(1) misspecified as autoregressive models. 3.8. Multistep forecasting models. 3.9. Summary -- ch. 4. The multivariate regression model. 4.1. Model description. 4.2. Selected derivations of model selection criteria. 4.3. Moments of model selection criteria. 4.4. Signal-to-noise corrected variants. 4.5. Overfitting properties. 4.6. Underfitting. 4.7. Monte Carlo study. 4.8. Summary -- ch. 5. The vector autoregressive model. 5.1. Model description. 5.2. Selected derivations of model selection criteria. 5.3. Small-sample signal-to-noise ratios. 5.4. Overfitting. 5.5. Underfitting in two special case models. 5.6. Vector autoregressive Monte Carlo study. 5.7. Summary -- ch. 6. Cross-validation and the bootstrap. 6.1. Univariate regression cross-validation. 6.2. Univariate autoregressive cross-validation. 6.3. Multivariate regression cross-validation. 6.4. Vector autoregressive cross-validation. 6.5. Univariate regression bootstrap. 6.6. Univariate autoregressive bootstrap. 6.7. Multivariate regression bootstrap. 6.8. Vector autoregressive bootstrap. 6.9. Monte Carlo study. 6.10. Summary -- ch. 7. Robust regression and quasi-likelihood. 7.1. Nonnormal error regression models. 7.2. Least absolute deviations regression. 7.3. Robust version of Cp. 7.4. Wald test version of Cp. 7.5. FPE for robust regression. 7.6. Unification of AIC criteria. 7.7. Quasi-likelihood. 7.8. Summary -- ch. 8. Nonparametric regression and wavelets. 8.1. Model selection in nonparametric regression. 8.2. Semiparametric regression model selection. 8.3. A cross-validatory AIC for hard wavelet thresholding. 8.4. Summary -- ch. 9. Simulations and examples. 9.1. Introduction. 9.2. Univariate regression models. 9.3. Autoregressive models. 9.4. Moving average MA(1) misspecified as autoregressive models. 9.5. Multivariate regression models. 9.6. Vector autoregressive models. 9.7. Summary. 
520 |a This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Regression analysis. 
650 0 |a Time-series analysis. 
650 0 |a Mathematical models. 
650 6 |a Analyse de régression. 
650 6 |a Série chronologique. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
650 7 |a Time-series analysis.  |2 fast  |0 (OCoLC)fst01151190 
650 7 |a Tidsserieanalys.  |2 sao 
650 7 |a Matematisk statistik.  |2 sao 
650 2 |a Regression Analysis 
650 2 |a Models, Theoretical 
700 1 |a Tsai, Chih-Ling. 
776 0 8 |i Print version:  |a McQuarrie, Allan D.R.  |t Regression and time series model selection.  |d Singapore ; River Edge, N.J. : World Scientific, ©1998  |z 981023242X  |w (DLC) 98190995  |w (OCoLC)39719241 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91492  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21190213 
938 |a EBSCOhost  |b EBSC  |n 91492 
938 |a YBP Library Services  |b YANK  |n 2407618 
938 |a Internet Archive  |b INAR  |n regressiontimese0000mcqu 
994 |a 92  |b IZTAP