Cargando…

Regression and time series model selection /

This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semipar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McQuarrie, Allan D. R.
Otros Autores: Tsai, Chih-Ling
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©1998.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Descripción Física:1 online resource (xxi, 455 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 430-439) and indexes.
ISBN:9812385452
9789812385451
981023242X
9789810232429