|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocm52762436 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
030731s2003 mdua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d OCLCQ
|d TUU
|d OCLCQ
|d TNF
|d OCLCQ
|d ZCU
|d OCLCO
|d OCLCF
|d OCLCQ
|d NLGGC
|d OCLCQ
|d E7B
|d P@U
|d COO
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AGLDB
|d PIFBR
|d MERUC
|d OCLCQ
|d WY@
|d LUE
|d VTS
|d TOF
|d AU@
|d OCLCQ
|d K6U
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 847594358
|a 965353906
|a 992053615
|
020 |
|
|
|a 0801877970
|q (electronic bk.)
|
020 |
|
|
|a 9780801877971
|q (electronic bk.)
|
020 |
|
|
|z 0801872200
|q (alk. paper)
|
020 |
|
|
|z 9780801872204
|
029 |
1 |
|
|a DEBBG
|b BV043094086
|
029 |
1 |
|
|a DEBSZ
|b 422438480
|
029 |
1 |
|
|a DEBSZ
|b 44971523X
|
035 |
|
|
|a (OCoLC)52762436
|z (OCoLC)847594358
|z (OCoLC)965353906
|z (OCoLC)992053615
|
050 |
|
4 |
|a QC174.85.B38
|b L45 2003eb
|
072 |
|
7 |
|a SCI
|x 040000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.15/95
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lemm, Jörg C.
|
245 |
1 |
0 |
|a Bayesian field theory /
|c Jörg C. Lemm.
|
260 |
|
|
|a Baltimore, Md. :
|b Johns Hopkins University Press,
|c 2003.
|
300 |
|
|
|a 1 online resource (xix, 411 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 365-402) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Contents; List of Figures; List of Tables; List of Numerical Case Studies; Acknowledgments; 1 Introduction; 2 Bayesian framework; 2.1 Bayesian models; 2.1.1 Independent, dependent, and hidden variables; 2.1.2 Energies, free energies, and errors; 2.1.3 Bayes' theorem: Posterior, prior, and likelihood; 2.1.4 Predictive density and learning; 2.1.5 Mutual information and learning; 2.1.6 Maximum A Posteriori Approximation (MAP); 2.1.7 Normalization, non-negativity, and specific priors; 2.1.8 Numerical case study: A fair coin?; 2.2 Bayesian decision theory; 2.2.1 Loss and risk.
|
505 |
8 |
|
|a 2.2.2 Loss functions for approximation2.2.3 General loss functions and unsupervised learning; 2.2.4 Log-loss and Maximum A Posteriori Approximation; 2.2.5 Empirical risk minimization; 2.2.6 Interpretations of Occam's razor; 2.2.7 Approaches to empirical learning; 2.3 A priori information; 2.3.1 Controlled, measured, and structural priors; 2.3.2 Noise induced priors; 3 Gaussian prior factors; 3.1 Gaussian prior factor for log-likelihoods; 3.1.1 Lagrange multipliers: Error functional E(L); 3.1.2 Normalization by parameterization: Error functional E(g); 3.1.3 The Hessians H[sub(L)], H[sub(g)].
|
505 |
8 |
|
|a 3.2 Gaussian prior factor for likelihoods3.2.1 Lagrange multipliers: Error functional E(P); 3.2.2 Normalization by parameterization: Error functional E(z); 3.2.3 The Hessians H[sub(P)], H[sub(z)]; 3.3 Quadratic density estimation and empirical risk minimization; 3.4 Numerical case study: Density estimation with Gaussian specific priors; 3.5 Gaussian prior factors for general field; 3.5.1 The general case; 3.5.2 Square root of P; 3.5.3 Distribution functions; 3.6 Covariances and invariances; 3.6.1 Approximate invariance; 3.6.2 Infinitesimal translations; 3.6.3 Approximate periodicity.
|
505 |
8 |
|
|a 3.6.4 Approximate fractals3.7 Non-zero means; 3.8 Regression; 3.8.1 Gaussian regression; 3.8.2 Exact predictive density; 3.8.3 Gaussian mixture regression (cluster regression); 3.8.4 Support vector machines and regression; 3.8.5 Numerical case study: Approximately invariant regression (AIR); 3.9 Classification; 4 Parameterizing likelihoods: Variational methods; 4.1 General likelihood parameterizations; 4.2 Gaussian priors for likelihood parameters; 4.3 Linear trial spaces; 4.4 Linear regression; 4.5 Mixture models; 4.6 Additive models; 4.7 Product ansatz; 4.8 Decision trees.
|
505 |
8 |
|
|a 4.9 Projection pursuit4.10 Neural networks; 5 Parameterizing priors: Hyperparameters; 5.1 Quenched and annealed prior normalization; 5.2 Saddle point approximations and hyperparameters; 5.2.1 Joint MAP; 5.2.2 Stepwise MAP; 5.2.3 Pointwise approximation; 5.2.4 Marginal posterior and empirical Bayes; 5.2.5 Some variants of stationarity equations; 5.3 Adapting prior, means; 5.3.1 General considerations; 5.3.2 Density estimation and nonparametric boosting; 5.3.3 Unrestricted variation; 5.3.4 Regression; 5.4 Adapting prior covariances; 5.4.1 General case; 5.4.2 Automatic relevance detection.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Bayesian field theory.
|
650 |
|
6 |
|a Théorie des champs bayésienne.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x Mathematical & Computational.
|2 bisacsh
|
650 |
|
7 |
|a Bayesian field theory.
|2 fast
|0 (OCoLC)fst00829018
|
776 |
0 |
8 |
|i Print version:
|a Lemm, Jörg C.
|t Bayesian field theory.
|d Baltimore, Md. : Johns Hopkins University Press, 2003
|z 0801872200
|w (DLC) 2002073958
|w (OCoLC)50184931
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=79367
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH14709956
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3318656
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 79367
|
938 |
|
|
|a Project MUSE
|b MUSE
|n muse20140
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2341125
|
994 |
|
|
|a 92
|b IZTAP
|