Bäcklund and Darboux transformations : geometry and modern applications in soliton theory /
"This book describes the connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors explore the body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Backlund, and Eisenhart...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2002.
|
Colección: | Cambridge texts in applied mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Pseudospherical Surfaces and the Classical Backlund Transformation. The Bianchi System
- 1.1. Gauss-Weingarten Equations for Hyperbolic Surfaces. Pseudospherical Surfaces. The Sine-Gordon Equation
- 1.2. Classical Backlund Transformation for the Sine-Gordon Equation
- 1.3. Bianchi's Permutability Theorem. Generation of Multi-Soliton Solutions
- 1.4. Pseudospherical Soliton Surfaces. Breathers
- 1.5. Parallel Surfaces. Induced Backlund Transformation for a Class of Weingarten Surfaces
- 1.6. Bianchi System. Its Auto-Backlund Transformation
- 2. Motion of Curves and Surfaces. Soliton Connections
- 2.1. Motions of Curves of Constant Torsion or Curvature. The Sine-Gordon Connection
- 2.2. 2 x 2 Linear Representation for the Sine-Gordon Equation
- 2.3. Motion of Pseudospherical Surfaces. A Weingarten System and Its Backlund Transformation
- 2.4.