Cargando…

Bäcklund and Darboux transformations : geometry and modern applications in soliton theory /

"This book describes the connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors explore the body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Backlund, and Eisenhart...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rogers, C.
Otros Autores: Schief, W. K. (Wolfgang Karl), 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2002.
Colección:Cambridge texts in applied mathematics.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"This book describes the connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors explore the body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Backlund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Backlund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauss-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Backlund-Darboux transformations." "This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physicists."--Jacket
Descripción Física:1 online resource (xvii, 413 pages) : illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:0511020546
9780511020544
9780521813310
052181331X
9780521012881
0521012880
0511157908
9780511157905
9780511606359
0511606354