Cargando…

Least action principle of crystal formation of dense packing type and Kepler's conjecture /

The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of p/v18. In 1611, Johannes Kepler had already "conjectured" that p/v18 should be the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hsiang, Wu Yi, 1937-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, 2001.
Colección:Nankai tracts in mathematics ; v. 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm52613288
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030715s2001 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCG  |d OCLCQ  |d IDEBK  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCF  |d OCLCO  |d NLGGC  |d OCLCQ  |d EBLCP  |d NRU  |d DEBSZ  |d OCLCQ  |d ZCU  |d VTS  |d AGLDB  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d STF  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d UMK  |d OCLCQ  |d LEAUB  |d SDF  |d OCLCO  |d OCLCQ 
019 |a 475900343  |a 1055390609  |a 1063967894  |a 1081231871  |a 1086511876 
020 |a 981238491X  |q (electronic bk.) 
020 |a 9789812384911  |q (electronic bk.) 
020 |a 9810246706 
020 |a 9789810246709 
029 1 |a AU@  |b 000058360487 
029 1 |a DEBBG  |b BV043101142 
029 1 |a DEBBG  |b BV044078010 
029 1 |a DEBSZ  |b 37928815X 
029 1 |a DEBSZ  |b 42242935X 
029 1 |a GBVCP  |b 801037107 
035 |a (OCoLC)52613288  |z (OCoLC)475900343  |z (OCoLC)1055390609  |z (OCoLC)1063967894  |z (OCoLC)1081231871  |z (OCoLC)1086511876 
050 4 |a QA166.7  |b .H85 2001eb 
072 7 |a MAT  |x 036000  |2 bisacsh 
082 0 4 |a 511/.6  |2 21 
049 |a UAMI 
100 1 |a Hsiang, Wu Yi,  |d 1937- 
245 1 0 |a Least action principle of crystal formation of dense packing type and Kepler's conjecture /  |c Wu-Yi Hsiang. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c 2001. 
300 |a 1 online resource (xxi, 402 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nankai tracts in mathematics ;  |v v. 3 
504 |a Includes bibliographical references (pages 397-399) and index. 
588 0 |a Print version record. 
505 0 |a Foreword; Acknowledgment; List of Symbols; Chapter 1 Introduction; Chapter 2 The Basics of Euclidean and Spherical Geometries and a New Proof of the Problem of Thirteen Spheres; Chapter 3 Circle Packings and Sphere Packings; Chapter 4 Geometry of Local Cells and Specific Volume Estimation Techniques for Local Cells; Chapter 5 Estimates of Total Buckling Height; Chapter 6 The Proof of the Dodecahedron Conjecture; Chapter 7 Geometry of Type I Configurations and Local Extensions; Chapter 8 The Proof of Main Theorem I; Chapter 9 Retrospects and Prospects; References; Index. 
520 |a The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal "known density" of p/v18. In 1611, Johannes Kepler had already "conjectured" that p/v18 should be the optimal "density" of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that p/v18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of densi 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Kepler's conjecture. 
650 0 |a Sphere packings. 
650 0 |a Crystallography, Mathematical. 
650 6 |a Conjecture de Kepler. 
650 6 |a Empilements de sphères. 
650 6 |a Cristallographie mathématique. 
650 7 |a MATHEMATICS  |x Combinatorics.  |2 bisacsh 
650 7 |a Crystallography, Mathematical.  |2 fast  |0 (OCoLC)fst00884665 
650 7 |a Kepler's conjecture.  |2 fast  |0 (OCoLC)fst00986844 
650 7 |a Sphere packings.  |2 fast  |0 (OCoLC)fst01129672 
776 0 8 |i Print version:  |a Hsiang, Wu Yi, 1937-  |t Least action principle of crystal formation of dense packing type and Kepler's conjecture.  |d Singapore ; River Edge, NJ : World Scientific, 2001  |z 9810246706  |w (DLC) 2001045504  |w (OCoLC)47623942 
830 0 |a Nankai tracts in mathematics ;  |v v. 3. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=83665  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21190094 
938 |a EBL - Ebook Library  |b EBLB  |n EBL183742 
938 |a EBSCOhost  |b EBSC  |n 83665 
938 |a YBP Library Services  |b YANK  |n 2405839 
994 |a 92  |b IZTAP