Cargando…

Mining the Web : discovering knowledge from hypertext data /

Mining the Web: Discovering Knowledge from Hypertext Data is the first book devoted entirely to techniques for producing knowledge from the vast body of unstructured Web data. Building on an initial survey of infrastructural issuesincluding Web crawling and indexingChakrabarti examines low-level mac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chakrabarti, Soumen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Morgan Kaufmann, ©2003.
Colección:Morgan Kaufmann series in data management systems.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm52365953
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030604s2003 maua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d N$T  |d OCLCQ  |d TUU  |d OCLCQ  |d TNF  |d TULIB  |d OCLCQ  |d MUO  |d OCLCF  |d P4I  |d OCLCQ  |d OCLCO  |d E7B  |d OCLCQ  |d AGLDB  |d PIFBR  |d OCLCQ  |d SAV  |d OCLCQ  |d QT7  |d WY@  |d ROC  |d LUE  |d STF  |d VTS  |d OCLCQ  |d NLE  |d INT  |d TOF  |d OCLCQ  |d UKMGB  |d OL$  |d VT2  |d ADU  |d CHBRC  |d VLY  |d UKEHC  |d OCLCO  |d OCLCQ 
015 |a GBB6H3891  |2 bnb 
016 7 |a 017582018  |2 Uk 
019 |a 532395103  |a 647654239  |a 961593137  |a 962585636  |a 992068961  |a 1007378021  |a 1020537890  |a 1035656622  |a 1053032978  |a 1103259803  |a 1135437134  |a 1153043964  |a 1162202390  |a 1200073172 
020 |a 9780080511726  |q (electronic bk.) 
020 |a 0080511724  |q (electronic bk.) 
020 |a 0585449996  |q (electronic bk.) 
020 |a 9780585449999  |q (electronic bk.) 
020 |a 1281035327 
020 |a 9781281035325 
020 |a 9786611035327 
020 |a 661103532X 
020 |z 9781558607545 
020 |z 1558607544  |q (alk. paper) 
029 1 |a AU@  |b 000071511425 
029 1 |a DEBBG  |b BV043105456 
029 1 |a DEBSZ  |b 422432059 
029 1 |a NZ1  |b 11771940 
029 1 |a UKMGB  |b 017582018 
035 |a (OCoLC)52365953  |z (OCoLC)532395103  |z (OCoLC)647654239  |z (OCoLC)961593137  |z (OCoLC)962585636  |z (OCoLC)992068961  |z (OCoLC)1007378021  |z (OCoLC)1020537890  |z (OCoLC)1035656622  |z (OCoLC)1053032978  |z (OCoLC)1103259803  |z (OCoLC)1135437134  |z (OCoLC)1153043964  |z (OCoLC)1162202390  |z (OCoLC)1200073172 
037 |a 9780080511726  |b Ingram Content Group 
050 4 |a QA76.9.D343  |b C43 2002eb 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 005.7/2  |2 21 
049 |a UAMI 
100 1 |a Chakrabarti, Soumen. 
245 1 0 |a Mining the Web :  |b discovering knowledge from hypertext data /  |c Soumen Chakrabarti. 
246 3 0 |a Discovering knowledge from hypertext data 
260 |a Boston :  |b Morgan Kaufmann,  |c ©2003. 
300 |a 1 online resource (xviii, 344 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Morgan Kaufmann series in data management systems 
504 |a Includes bibliographical references (pages 307-326) and index. 
586 |a Association of American Publishers PROSE Award, 2003. 
588 0 |a Print version record. 
520 |a Mining the Web: Discovering Knowledge from Hypertext Data is the first book devoted entirely to techniques for producing knowledge from the vast body of unstructured Web data. Building on an initial survey of infrastructural issuesincluding Web crawling and indexingChakrabarti examines low-level machine learning techniques as they relate specifically to the challenges of Web mining. He then devotes the final part of the book to applications that unite infrastructure and analysis to bring machine learning to bear on systematically acquired and stored data. Here the focus is on results: the strengths and weaknesses of these applications, along with their potential as foundations for further progress. From Chakrabarti's workpainstaking, critical, and forward-lookingreaders will gain the theoretical and practical understanding they need to contribute to the Web mining effort. * A comprehensive, critical exploration of statistics-based attempts to make sense of Web Mining. * Details the special challenges associated with analyzing unstructured and semi-structured data. * Looks at how classical Information Retrieval techniques have been modified for use with Web data. * Focuses on today's dominant learning methods: clustering and classification, hyperlink analysis, and supervised and semi-supervised learning. * Analyzes current applications for resource discovery and social network analysis. * An excellent way to introduce students to especially vital applications of data mining and machine learning technology.</li></ul>. 
505 0 |a Crawling the Web -- Web search and information retrieval -- Similarity and clustering -- Supervised learning -- Semisupervised learning -- Social network analysis -- Resource discovery -- The future of Web mining. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Hypertext systems. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Hypertexte. 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Hypertext systems.  |2 fast  |0 (OCoLC)fst00965876 
776 0 8 |i Print version:  |a Chakrabarti, Soumen.  |t Mining the Web.  |d Boston : Morgan Kaufmann, ©2003  |z 1558607544  |w (OCoLC)50301829 
830 0 |a Morgan Kaufmann series in data management systems. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=81853  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781558607545/?ar  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 81853 
938 |a YBP Library Services  |b YANK  |n 2333238 
994 |a 92  |b IZTAP