Cargando…

Logic, form, and grammar /

"We frequently use hypotheticals in our arguments with the common sense assertion that they are a logical form. "If I pass my exams then I will be able to continue my studies. I passed my exams therefore I will be continuing my studies". The conclusion of such an argument is clearly i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Long, Peter, 1926-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; New York : Routledge, 2001.
Colección:International library of philosophy.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm52098716
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030422s2001 enk ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCG  |d OCLCQ  |d TUU  |d OCLCQ  |d TNF  |d OCLCQ  |d QE2  |d IDEBK  |d MERUC  |d CCO  |d E7B  |d COO  |d MT4IT  |d DKDLA  |d EBLCP  |d OCLCO  |d OCLCQ  |d OTZ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCQ  |d TYFRS  |d BTCTA  |d OCLCQ  |d AZK  |d CNNLC  |d AGLDB  |d MOR  |d PIFBR  |d ZCU  |d OCLCQ  |d COCUF  |d OCLCQ  |d WY@  |d U3W  |d LUE  |d CN8ML  |d STF  |d BRL  |d WRM  |d JBG  |d OCLCQ  |d VTS  |d CEF  |d NRAMU  |d ICG  |d MOQ  |d VT2  |d TOF  |d OCLCQ  |d LHU  |d FVL  |d G3B  |d TKN  |d LEAUB  |d DKC  |d OCLCQ  |d CNTRU  |d OCLCQ  |d K6U  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ 
019 |a 171117977  |a 179159156  |a 252952658  |a 437076899  |a 456018563  |a 475655914  |a 488340940  |a 503043275  |a 559999981  |a 647328384  |a 756863686  |a 888706181  |a 961539923  |a 962686049  |a 1037507735 
020 |a 0203242688  |q (electronic bk.) 
020 |a 9780203242681  |q (electronic bk.) 
020 |a 0203470974  |q (electronic bk.) 
020 |a 9780203470978  |q (electronic bk.) 
020 |a 9780415242240 
020 |a 041524224X 
029 1 |a AU@  |b 000053002504 
029 1 |a AU@  |b 000054154576 
029 1 |a AU@  |b 000073099750 
029 1 |a DEBBG  |b BV043100277 
029 1 |a DEBBG  |b BV044076036 
029 1 |a DEBSZ  |b 422436305 
029 1 |a NZ1  |b 12033582 
035 |a (OCoLC)52098716  |z (OCoLC)171117977  |z (OCoLC)179159156  |z (OCoLC)252952658  |z (OCoLC)437076899  |z (OCoLC)456018563  |z (OCoLC)475655914  |z (OCoLC)488340940  |z (OCoLC)503043275  |z (OCoLC)559999981  |z (OCoLC)647328384  |z (OCoLC)756863686  |z (OCoLC)888706181  |z (OCoLC)961539923  |z (OCoLC)962686049  |z (OCoLC)1037507735 
050 4 |a BC199.F6  |b L66 2001eb 
055 1 3 |a BC199.F6  |b L66 2001eb 
072 7 |a PHI  |x 011000  |2 bisacsh 
082 0 4 |a 160  |2 21 
049 |a UAMI 
100 1 |a Long, Peter,  |d 1926- 
245 1 0 |a Logic, form, and grammar /  |c Peter Long. 
260 |a London ;  |a New York :  |b Routledge,  |c 2001. 
300 |a 1 online resource (x, 110 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a International library of philosophy 
504 |a Includes bibliographical references (pages 107-110). 
588 0 |a Print version record. 
520 1 |a "We frequently use hypotheticals in our arguments with the common sense assertion that they are a logical form. "If I pass my exams then I will be able to continue my studies. I passed my exams therefore I will be continuing my studies". The conclusion of such an argument is clearly inferred from the hypothetical. Yet hypotheticals are one of the long-standing problems in the study of logic: the claim that they fall under the logical form has never been proven. So how then can logic claim to be the science of formal inference? Peter Long resolves these difficulties and others, and challenges traditional thinking in the area. In addition to his essay on hypotheticals, this study also contains two essays concerned with classical problems in philosophical logic, relating to notions of logical form and formal relations. How do we relate a thing with having a property as in "This sheet is white" or of the proposition "London is north of Paris", where this is an expression of a relation to a relation?" 
505 0 |a pt. 1. Logical form and hypothetical reasoning -- pt. 2. Formal relations -- pt. 3. Universals : logic and metaphor. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Form (Logic) 
650 6 |a Forme (Logique) 
650 7 |a PHILOSOPHY  |x Logic.  |2 bisacsh 
650 7 |a Form (Logic)  |2 fast  |0 (OCoLC)fst00932888 
653 |a Humaniora  |a Filosofi. 
776 0 8 |i Print version:  |a Long, Peter, 1926-  |t Logic, form, and grammar.  |d London ; New York : Routledge, 2001  |z 041524224X  |w (DLC) 00055322  |w (OCoLC)44632930 
830 0 |a International library of philosophy. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=80045  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0008755751 
938 |a EBL - Ebook Library  |b EBLB  |n EBL167103 
938 |a EBSCOhost  |b EBSC  |n 80045 
938 |a Taylor & Francis  |b TAFR  |n 9780203470978 
938 |a YBP Library Services  |b YANK  |n 2282179 
994 |a 92  |b IZTAP