Cargando…

Learning kernel classifiers : theory and algorithms /

Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Herbrich, Ralf
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2002.
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm51991806
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030408s2002 maua ob 001 0 eng d
010 |z  2001044445 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d N$T  |d IDEBK  |d OCLCQ  |d TUU  |d OCLCQ  |d TNF  |d OCLCQ  |d IEEEE  |d ZCU  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCQ  |d AGLDB  |d PIFBR  |d ESU  |d OCLCQ  |d NJR  |d WY@  |d ROC  |d OCLCQ  |d MNS  |d LUE  |d RCC  |d VTS  |d MERER  |d OCLCQ  |d INT  |d TOF  |d OCLCQ  |d MITPR  |d STF  |d OL$  |d VT2  |d OCLCO  |d OCLCQ  |d COA  |d OCLCO 
019 |a 961683820  |a 962676938  |a 991953039  |a 1011939695  |a 1020510321  |a 1022038083  |a 1053051972  |a 1286907604  |a 1340067701 
020 |a 9780262256339  |q (electronic bk.) 
020 |a 0262256339  |q (electronic bk.) 
020 |a 0585436681  |q (electronic bk.) 
020 |a 9780585436685  |q (electronic bk.) 
020 |a 9780262083065 
020 |a 026208306X 
024 8 |a (WaSeSS)ssj0000190583 
029 1 |a AU@  |b 000051284526 
029 1 |a DEBBG  |b BV042508860 
029 1 |a DEBBG  |b BV042957127 
029 1 |a DEBSZ  |b 422450928 
035 |a (OCoLC)51991806  |z (OCoLC)961683820  |z (OCoLC)962676938  |z (OCoLC)991953039  |z (OCoLC)1011939695  |z (OCoLC)1020510321  |z (OCoLC)1022038083  |z (OCoLC)1053051972  |z (OCoLC)1286907604  |z (OCoLC)1340067701 
037 |a 4170  |b MIT Press 
037 |a 9780262256339  |b MIT Press 
050 4 |a Q325.5  |b .H48 2002eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 21 
049 |a UAMI 
100 1 |a Herbrich, Ralf. 
245 1 0 |a Learning kernel classifiers :  |b theory and algorithms /  |c Ralf Herbrich. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2002. 
300 |a 1 online resource (xx, 364 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
490 1 |a Adaptive computation and machine learning 
504 |a Includes bibliographical references (pages 339-355) and index. 
588 0 |a Print version record. 
520 |a Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
650 2 |a Algorithms 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Algorithms  |2 fast 
650 7 |a Machine learning  |2 fast 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
776 0 8 |i Print version:  |a Herbrich, Ralf.  |t Learning kernel classifiers.  |d Cambridge, Mass. : MIT Press, ©2002  |z 026208306X  |w (DLC) 2001044445  |w (OCoLC)47705793 
830 0 |a Adaptive computation and machine learning. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=74987  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 74987 
938 |a YBP Library Services  |b YANK  |n 2332019 
994 |a 92  |b IZTAP