Cargando…

Polynomials with special regard to reducibility /

This book covers most of the known results on reducibility of polynomials over arbitrary fields, algebraically closed fields and finitely generated fields. Results valid only over finite fields, local fields or the rational field are not covered here, but several theorems on reducibility of polynomi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schinzel, Andrzej
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2000.
Colección:Encyclopedia of mathematics and its applications ; v. 77.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm51240460
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 021217s2000 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d MERUC  |d CCO  |d E7B  |d EBLCP  |d UV0  |d AU@  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCO  |d DKDLA  |d OCLCQ  |d NLGGC  |d OCLCQ  |d YDXCP  |d OCLCQ  |d LOA  |d JBG  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d U3W  |d COO  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d OL$  |d OCLCQ  |d K6U  |d INARC  |d OCLCO  |d OCLCQ  |d VOD  |d OCLCQ  |d OCLCO 
019 |a 56727350  |a 228039933  |a 271785443  |a 559682268  |a 646906519  |a 668201533  |a 722777180  |a 852543561  |a 888643297  |a 961687001  |a 962692852  |a 1102537667 
020 |a 0511010656  |q (electronic bk.) 
020 |a 9780511010651  |q (electronic bk.) 
020 |a 0511033702  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780511033704  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780511542916 
020 |a 0511542917 
020 |z 0521662257  |q (hardbound) 
029 1 |a AU@  |b 000042830485 
029 1 |a AU@  |b 000051403310 
029 1 |a AU@  |b 000053240219 
029 1 |a DEBBG  |b BV043106795 
029 1 |a DEBSZ  |b 422455245 
029 1 |a GBVCP  |b 800914821 
029 1 |a NZ1  |b 11915015 
035 |a (OCoLC)51240460  |z (OCoLC)56727350  |z (OCoLC)228039933  |z (OCoLC)271785443  |z (OCoLC)559682268  |z (OCoLC)646906519  |z (OCoLC)668201533  |z (OCoLC)722777180  |z (OCoLC)852543561  |z (OCoLC)888643297  |z (OCoLC)961687001  |z (OCoLC)962692852  |z (OCoLC)1102537667 
050 4 |a QA161.P59  |b S337 2000eb 
072 7 |a MAT  |x 002030  |2 bisacsh 
082 0 4 |a 512.9/42  |2 21 
049 |a UAMI 
100 1 |a Schinzel, Andrzej. 
245 1 0 |a Polynomials with special regard to reducibility /  |c A. Schinzel. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2000. 
300 |a 1 online resource (x, 558 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v v. 77 
504 |a Includes bibliographical references (pages 540-554) and index. 
588 0 |a Print version record. 
505 0 0 |g 1.  |t Arbitrary polynomials over an arbitrary field --  |g 2.  |t Lacunary polynomials over an arbitrary field --  |g 3.  |t Polynomials over an algebraically closed field --  |g 4.  |t Polynomials over a finitely generated field --  |g 5.  |t Polynomials over a number field --  |g 6.  |t Polynomials over a Kroneckerian field --  |g App. A.  |t Algebraic functions of one variable --  |g App. B.  |t Elimination theory --  |g App. C.  |t Permutation groups and abstract groups --  |g App. D.  |t Diophantine equations --  |g App. E.  |t Matrices and lattices --  |g App. F.  |t Finite fields and congruences --  |g App. G.  |t Analysis --  |g App. I.  |t Inequalities --  |g App. J.  |t Distribution of primes --  |g App. K.  |t Convexity --  |g App.  |t Proof of Conjecture 1 /  |r Umberto Zannier. 
520 |a This book covers most of the known results on reducibility of polynomials over arbitrary fields, algebraically closed fields and finitely generated fields. Results valid only over finite fields, local fields or the rational field are not covered here, but several theorems on reducibility of polynomials over number fields that are either totally real or complex multiplication fields are included. Some of these results are based on recent work of E. Bombieri and U. Zannier (presented here by Zannier in an appendix). The book also treats other subjects like Ritt's theory of composition of polynomials, and properties of the Mahler measure, and it concludes with a bibliography of over 300 items. This unique work will be a necessary resource for all number theorists and researchers in related fields. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Polynomials. 
650 6 |a Polynômes. 
650 7 |a MATHEMATICS  |x Algebra  |x Elementary.  |2 bisacsh 
650 7 |a Polynomials  |2 fast 
650 1 7 |a Polynomen.  |2 gtt 
650 7 |a Polynômes.  |2 ram 
776 0 8 |i Print version:  |a Schinzel, Andrzej.  |t Polynomials with special regard to reducibility.  |d Cambridge ; New York : Cambridge University Press, 2000  |z 0521662257  |w (DLC) 99030140  |w (OCoLC)41404555 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 77. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=73442  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 73442 
938 |a Internet Archive  |b INAR  |n polynomialswiths0000schi 
938 |a YBP Library Services  |b YANK  |n 2617166 
938 |a YBP Library Services  |b YANK  |n 2826092 
938 |a YBP Library Services  |b YANK  |n 3275869 
938 |a YBP Library Services  |b YANK  |n 2299992 
994 |a 92  |b IZTAP