|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
EBOOKCENTRAL_on1373388321 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230320s2022 ne ob 000 0 eng d |
040 |
|
|
|a IOSPR
|b eng
|e rda
|e pn
|c IOSPR
|d N$T
|d YDX
|d EBLCP
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d TMA
|d OCLCQ
|
019 |
|
|
|a 1373232816
|a 1373345094
|
020 |
|
|
|a 9781643683638
|q (electronic bk.)
|
020 |
|
|
|a 1643683632
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000075409896
|
035 |
|
|
|a (OCoLC)1373388321
|z (OCoLC)1373232816
|z (OCoLC)1373345094
|
037 |
|
|
|a 9781643683638
|b IOS Press
|n http://www.iospress.nl
|
050 |
|
4 |
|a Q325.6
|
082 |
0 |
4 |
|a 006.3/1
|2 23/eng/20230320
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Metelli, Alberto Maria,
|e author.
|
245 |
1 |
0 |
|a Exploiting environment configurability in reinforcement learning /
|c Alberto Maria Metelli.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b IOS Press,
|c 20221207.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Frontiers in artificial intelligence and applications ;
|v volume 361
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from PDF title page (IOS Press, viewed March 20, 2023).
|
505 |
0 |
|
|a Intro -- Title page -- Abstract -- Contents -- List of Figures -- List of Tables -- List of Algorithms -- List of Symbols and Notation -- Acknowledgments -- Introduction -- What is Reinforcement Learning? -- Why Environment Configurability? -- Original Contributions -- Overview -- Foundations of Sequential Decision-Making -- Introduction -- Markov Decision Processes -- Markov Reward Processes -- Markov Chains -- Performance Indexes -- Value Functions -- Optimality Criteria -- Exact Solution Methods -- Reinforcement Learning Algorithms -- Temporal Difference Methods -- Function Approximation
|
505 |
8 |
|
|a Policy Search -- Modeling Environment Configurability -- Configurable Markov Decision Processes -- Introduction -- Motivations and Examples -- Definition -- Value Functions -- Bellman Equations and Operators -- Taxonomy -- Related Literature -- Solution Concepts for Conf-MDPs -- Cooperative Setting -- Non-Cooperative Setting -- Learning in Cooperative Configurable Markov Decision Processes -- Learning in Finite Cooperative Conf-MDPs -- Introduction -- Relative Advantage Functions -- Performance Improvement Bound -- Safe Policy Model Iteration -- Theoretical Analysis -- Experimental Evaluation
|
505 |
8 |
|
|a Examples of Conf-MDPs -- Learning in Continuous Conf-MDPs -- Introduction -- Solving Parametric Conf-MDPs -- Relative Entropy Model Policy Search -- Theoretical Analysis -- Approximation of the Transition Model -- Experiments -- Applications of Configurable Markov Decision Processes -- Policy Space Identification -- Introduction -- Generalized Likelihood Ratio Test -- Policy Space Identification in a Fixed Env -- Analysis for the Exponential Family -- Policy Space Identification in a Configurable Env -- Connections with Existing Work -- Experimental Results -- Control Frequency Adaptation
|
505 |
8 |
|
|a Introduction -- Persisting Actions in MDPs -- Bounding the Performance Loss -- Persistent Fitted Q-Iteration -- Persistence Selection -- Related Works -- Experimental Evaluation -- Open Questions -- Discussion and Conclusions -- Modeling Environment Configurability -- Learning in Conf-MDPs -- Applications of Conf-MDPs -- Appendices -- Additional Results and Proofs -- Additional Results and Proofs of Chapter 6 -- Additional Results and Proofs of Chapter 7 -- Additional Results and Proofs of Chapter 8 -- Additional Results and Proofs of Chapter 9 -- Exponential Family Policies
|
505 |
8 |
|
|a Gaussian and Boltzmann Linear Policies as Exponential Family distributions -- Fisher Information Matrix -- Subgaussianity Assumption -- Bibliography
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Reinforcement learning.
|
650 |
|
6 |
|a Apprentissage par renforcement (Intelligence artificielle)
|
650 |
|
7 |
|a Reinforcement learning
|2 fast
|
710 |
2 |
|
|a IOS Press.
|
776 |
0 |
8 |
|i Print version:
|a Metelli, A. M.
|t Exploiting Environment Configurability in Reinforcement Learning
|d Amsterdam : IOS Press, Incorporated,c2022
|z 9781643683621
|
830 |
|
0 |
|a Frontiers in artificial intelligence and applications ;
|v v. 361.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=30413114
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3575340
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 304689537
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL30413114
|
994 |
|
|
|a 92
|b IZTAP
|