|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1369662100 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2022 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d OCLCO
|d EBLCP
|d OCLCQ
|d REDDC
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1369668162
|
020 |
|
|
|a 9781630819019
|
020 |
|
|
|a 1630819018
|
035 |
|
|
|a (OCoLC)1369662100
|z (OCoLC)1369668162
|
050 |
|
4 |
|a TK5102.9
|b .C658 2023
|
082 |
0 |
4 |
|a 621.3848
|q OCoLC
|2 23/eng/20230110
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Coluccia, Angelo.
|
245 |
1 |
0 |
|a Adaptive Radar Detection
|h [electronic resource].
|
260 |
|
|
|a Norwood :
|b Artech House,
|c 2022.
|
300 |
|
|
|a 1 online resource (235 p.)
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Intro -- Adaptive Radar Detection Model-Based, Data-Driven, and Hybrid Approaches -- Contents -- Preface -- Acknowledgments -- 1 Model-Based Adaptive Radar Detection -- 1.1 Introduction to Radar Processing -- 1.1.1 Generalities and Basic Terminology of Coherent Radars -- 1.1.2 Array Processing and Space-Time Adaptive Processing -- 1.1.3 Target Detection and Performance Metrics -- 1.2 Unstructured Signal in White Noise -- 1.2.1 Old but Gold: Basic Signal Detection and the Energy Detector -- 1.2.2 The Neyman-Pearson Approach -- 1.2.3 Adaptive CFAR Detection
|
505 |
8 |
|
|a 1.2.4 Correlated Signal Model in White Noise -- 1.3 Structured Signal in White Noise -- 1.3.1 Detection of a Structured Signal in White Noise and Matched Filter -- 1.3.2 Generalized Likelihood Ratio Test -- 1.3.3 Detection of an Unknown Rank-One Signal in White Noise -- 1.3.4 Steering Vector Known up to a Parameter and Doppler Processing -- 1.4 Adaptive Detection in Colored Noise -- 1.4.1 One-Step, Two-Step, and Decoupled Processing -- 1.4.2 General Hypothesis Testing Problem via GLRT: A Comparison -- 1.4.3 Behavior under Mismatched Conditions: Robustness vs Selectivity
|
505 |
8 |
|
|a 1.4.4 Model-Based Design of Adaptive Detectors -- 1.5 Summary -- References -- 2 Classification Problems and Data-Driven Tools -- 2.1 General Decision Problems and Classification -- 2.1.1 M-ary Decision Problems -- 2.1.2 Classifiers and Decision Regions -- 2.1.3 Binary Classification vs Radar Detection -- 2.1.4 Signal Representation and Universal Approximation -- 2.2 Learning Approaches and Classification Algorithms -- 2.2.1 Statistical Learning -- 2.2.2 Bias-Variance Trade-Off -- 2.3 Data-Driven Classifiers -- 2.3.1 k-Nearest Neighbors
|
505 |
8 |
|
|a 2.3.2 Linear Methods for Dimensionality Reduction and Classification -- 2.3.3 Support Vector Machine and Kernel Methods -- 2.3.4 Decision Trees and Random Forests -- 2.3.5 Other Machine Learning Tools -- 2.4 Neural Networks and Deep Learning -- 2.4.1 Multilayer Perceptron -- 2.4.2 Feature Engineering vs Feature Learning -- 2.4.3 Deep Learning -- 2.5 Summary -- References -- 3 Radar Applications of Machine Learning -- 3.1 Data-Driven Radar Applications -- 3.2 Classification of Communication and Radar Signals -- 3.2.1 Automatic Modulation Recognition and Physical-Layer Applications
|
505 |
8 |
|
|a 3.2.2 Datasets and Experimentation -- 3.2.3 Classification of Radar Signals and Radiation Sources -- 3.3 Detection Based on Supervised Machine Learning -- 3.3.1 SVM-Based Detection with Controlled PFA -- 3.3.2 Decision Tree-Based Detection with Controlled PFA -- 3.3.3 Revisiting the Neyman-Pearson Approach -- 3.3.4 SVM and NN for CFAR Processing -- 3.3.5 Feature Spaces with (Generalized) CFAR Property -- 3.3.6 Deep Learning Based Detection -- 3.4 Other Approaches -- 3.4.1 Unsupervised Learning and Anomaly Detection -- 3.4.2 Reinforcement Learning -- 3.5 Summary -- References
|
500 |
|
|
|a 4 Hybrid Model-Based and Data-Driven Detection
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Adaptive signal processing.
|
650 |
|
6 |
|a Traitement adaptatif du signal.
|
655 |
|
0 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Coluccia, Angelo
|t Adaptive Radar Detection: Model-Based, Data-Driven and Hybrid Approaches
|d Norwood : Artech House,c2022
|z 9781630819002
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=30339945
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL30339945
|
994 |
|
|
|a 92
|b IZTAP
|