Lumped Elements for RF and Microwave Circuits, Second Edition
Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elem...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood :
Artech House,
2022.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Lumped Elements for RF and Microwave Circuits Second Edition
- Contents
- Preface
- Chapter 1 Introduction
- 1.1 History of Lumped Elements
- 1.2 Why Use Lumped Elements for RF and Microwave Circuits?
- 1.3 L, C, R Circuit Elements
- 1.4 Basic Design of Lumped Elements
- 1.4.1 Capacitor
- 1.4.2 Inductor
- 1.4.3 Resistor
- 1.5 Lumped-Element Modeling
- 1.6 Fabrication
- 1.7 Applications
- References
- Chapter 2 Inductors
- 2.1 Introduction
- 2.2 Basic Definitions
- 2.2.1 Inductance
- 2.2.2 Magnetic Energy
- 2.2.3 Mutual Inductance
- 2.2.4 Effective Inductance
- 2.2.5 Impedance
- 2.2.6 Time Constant
- 2.2.7 Quality Factor
- 2.2.8 Self-Resonant Frequency
- 2.2.9 Maximum Current Rating
- 2.2.10 Maximum Power Rating
- 2.2.11 Other Parameters
- 2.3 Inductor Configurations
- 2.4 Inductor Models
- 2.4.1 Analytical Models
- 2.4.2 Coupled-Line Approach
- 2.4.3 Mutual Inductance Approach
- 2.4.4 Numerical Approach
- 2.4.5 Measurement-Based Model
- 2.5 Coupling Between Inductors
- 2.5.1 Low-Resistivity Substrates
- 2.5.2 High-Resistivity Substrates
- 2.6 Electrical Representations
- 2.6.1 Series and Parallel Representations
- 2.6.2 Network Representations
- References
- Chapter 3 Printed Inductors
- 3.1 Inductors on Si Substrate
- 3.1.1 Conductor Loss
- 3.1.2 Substrate Loss
- 3.1.3 Layout Considerations
- 3.1.4 Inductor Model
- 3.1.5 Q-Enhancement Techniques
- 3.1.6 Stacked-Coil Inductor
- 3.1.7 Temperature Dependence
- 3.2 Inductors on GaAs Substrate
- 3.2.1 Inductor Models
- 3.2.2 Figure of Merit
- 3.2.3 Comprehensive Inductor Data
- 3.2.4 Q-Enhancement Techniques
- 3.2.5 Compact Inductors
- 3.2.6 High Current Handling Capability Inductors
- 3.3 Printed Circuit Board Inductors
- 3.4 Hybrid Integrated Circuit Inductors
- 3.4.1 Thin-Film Inductors
- 3.4.2 Thick-Film Inductors
- 3.4.3 LTCC Inductors
- 3.5 Ferromagnetic Inductors
- References
- Chapter 4 Wire Inductors
- 4.1 Wire-Wound Inductors
- 4.1.1 Analytical Expressions
- 4.1.2 Compact High-Frequency Inductors
- 4.2 Bond Wire Inductor
- 4.2.1 Single and Multiple Wires
- 4.2.2 Wire Near a Corner
- 4.2.3 Wire on a Substrate Backed by a Ground Plane
- 4.2.4 Wire Above a Substrate Backed by a Ground Plane
- 4.2.5 Curved Wire Connecting Substrates
- 4.2.6 Twisted Wire
- 4.2.7 Maximum Current Handling of Wires
- 4.3 Wire Models
- 4.3.1 Numerical Methods for Bond Wires
- 4.3.2 Measurement-Based Model for Air Core Inductors
- 4.3.3 Measurement-Based Model for Bond Wires
- 4.4 Broadband Inductors
- 4.5 Magnetic Materials
- References
- Chapter 5 Capacitors
- 5.1 Introduction
- 5.2 Capacitor Parameters
- 5.2.1 Capacitor Value
- 5.2.2 Effective Capacitance
- 5.2.3 Tolerances
- 5.2.4 Temperature Coefficient
- 5.2.5 Quality Factor
- 5.2.6 Equivalent Series Resistance
- 5.2.7 Series and Parallel Resonances
- 5.2.8 Dissipation Factor or Loss Tangent