Cargando…

Lumped Elements for RF and Microwave Circuits, Second Edition

Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bahl, Inder J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2022.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Lumped Elements for RF and Microwave Circuits Second Edition
  • Contents
  • Preface
  • Chapter 1 Introduction
  • 1.1 History of Lumped Elements
  • 1.2 Why Use Lumped Elements for RF and Microwave Circuits?
  • 1.3 L, C, R Circuit Elements
  • 1.4 Basic Design of Lumped Elements
  • 1.4.1 Capacitor
  • 1.4.2 Inductor
  • 1.4.3 Resistor
  • 1.5 Lumped-Element Modeling
  • 1.6 Fabrication
  • 1.7 Applications
  • References
  • Chapter 2 Inductors
  • 2.1 Introduction
  • 2.2 Basic Definitions
  • 2.2.1 Inductance
  • 2.2.2 Magnetic Energy
  • 2.2.3 Mutual Inductance
  • 2.2.4 Effective Inductance
  • 2.2.5 Impedance
  • 2.2.6 Time Constant
  • 2.2.7 Quality Factor
  • 2.2.8 Self-Resonant Frequency
  • 2.2.9 Maximum Current Rating
  • 2.2.10 Maximum Power Rating
  • 2.2.11 Other Parameters
  • 2.3 Inductor Configurations
  • 2.4 Inductor Models
  • 2.4.1 Analytical Models
  • 2.4.2 Coupled-Line Approach
  • 2.4.3 Mutual Inductance Approach
  • 2.4.4 Numerical Approach
  • 2.4.5 Measurement-Based Model
  • 2.5 Coupling Between Inductors
  • 2.5.1 Low-Resistivity Substrates
  • 2.5.2 High-Resistivity Substrates
  • 2.6 Electrical Representations
  • 2.6.1 Series and Parallel Representations
  • 2.6.2 Network Representations
  • References
  • Chapter 3 Printed Inductors
  • 3.1 Inductors on Si Substrate
  • 3.1.1 Conductor Loss
  • 3.1.2 Substrate Loss
  • 3.1.3 Layout Considerations
  • 3.1.4 Inductor Model
  • 3.1.5 Q-Enhancement Techniques
  • 3.1.6 Stacked-Coil Inductor
  • 3.1.7 Temperature Dependence
  • 3.2 Inductors on GaAs Substrate
  • 3.2.1 Inductor Models
  • 3.2.2 Figure of Merit
  • 3.2.3 Comprehensive Inductor Data
  • 3.2.4 Q-Enhancement Techniques
  • 3.2.5 Compact Inductors
  • 3.2.6 High Current Handling Capability Inductors
  • 3.3 Printed Circuit Board Inductors
  • 3.4 Hybrid Integrated Circuit Inductors
  • 3.4.1 Thin-Film Inductors
  • 3.4.2 Thick-Film Inductors
  • 3.4.3 LTCC Inductors
  • 3.5 Ferromagnetic Inductors
  • References
  • Chapter 4 Wire Inductors
  • 4.1 Wire-Wound Inductors
  • 4.1.1 Analytical Expressions
  • 4.1.2 Compact High-Frequency Inductors
  • 4.2 Bond Wire Inductor
  • 4.2.1 Single and Multiple Wires
  • 4.2.2 Wire Near a Corner
  • 4.2.3 Wire on a Substrate Backed by a Ground Plane
  • 4.2.4 Wire Above a Substrate Backed by a Ground Plane
  • 4.2.5 Curved Wire Connecting Substrates
  • 4.2.6 Twisted Wire
  • 4.2.7 Maximum Current Handling of Wires
  • 4.3 Wire Models
  • 4.3.1 Numerical Methods for Bond Wires
  • 4.3.2 Measurement-Based Model for Air Core Inductors
  • 4.3.3 Measurement-Based Model for Bond Wires
  • 4.4 Broadband Inductors
  • 4.5 Magnetic Materials
  • References
  • Chapter 5 Capacitors
  • 5.1 Introduction
  • 5.2 Capacitor Parameters
  • 5.2.1 Capacitor Value
  • 5.2.2 Effective Capacitance
  • 5.2.3 Tolerances
  • 5.2.4 Temperature Coefficient
  • 5.2.5 Quality Factor
  • 5.2.6 Equivalent Series Resistance
  • 5.2.7 Series and Parallel Resonances
  • 5.2.8 Dissipation Factor or Loss Tangent