Cargando…

Navigating Big Data Analytics Strategies for the Quality Systems Analyst.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mawby, William D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: La Vergne : ASQ Quality Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • CIP data
  • Table of Contents
  • List of Figures and Tables
  • Introduction
  • Chapter 1_An Introduction to
  • Deep Learning
  • When to Use This Technology
  • Defining the Problem
  • A Note About Technology
  • Navigating Big Data
  • Structure of This Book
  • Chapter 2_Potential Data Problems and How They Arise
  • Rapid Data Collection Concerns
  • Format Concerns
  • Off-line Testing Data
  • Historical Data
  • Expert Opinion
  • HACCP Applications
  • The Problem of Modified Data
  • Prevalence of Data Problems
  • Data Problem Impact
  • Scoping the Issues Instead of All the Problems
  • Chapter 3_Designed Experiments Versus Big Data Analysis
  • Statistically Designed Experiments
  • Chances of Observing Extreme Settings
  • Big Data Limitations
  • Costs of Experimentation
  • Time Issues
  • Coverage of Typical Conditions
  • Measurement Error
  • Expert Opinion
  • Chapter 4_The Challenge of
  • The Big Data Approach
  • Evaluating the True Impact
  • Types of Missing Values
  • Big Data Processes
  • More Data as a Solution
  • The Importance of Identifying Missing Data
  • Chapter 5_The Impact of Poor Randomization
  • Randomization and Bias
  • Practical Application
  • Other Challenges
  • Stability
  • A Resampling Approach
  • The Risk of Losing Data
  • Chapter 6_Expert Opinion
  • The Essential Difference of the Bayesian Approach
  • Lessons from Extreme Priors
  • Model Selection Impact
  • Causal Analysis
  • Chapter 7_Censored Data
  • A Big Data Approach
  • Shortcomings of Big Data and Censoring
  • Correcting the Bias Problem
  • Chapter 8_Other Potential Problems
  • The Treatment of Outliers
  • Missing Data Issues
  • Decision Error
  • Model Complexity
  • Accumulation of Knowledge
  • Some General Observations
  • Conclusion
  • End Notes
  • Glossary
  • Index
  • About the Author