Cargando…

Navigating Big Data Analytics Strategies for the Quality Systems Analyst.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mawby, William D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: La Vergne : ASQ Quality Press, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1356005489
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 230107s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d UKAHL  |d OCLCQ  |d REDDC  |d OCLCF  |d OCLCQ  |d OCLCO 
020 |a 9781951058173 
020 |a 1951058178 
035 |a (OCoLC)1356005489 
050 4 |a QA276 .M39 2021 
082 0 4 |a 519.5--dc23 
049 |a UAMI 
100 1 |a Mawby, William D. 
245 1 0 |a Navigating Big Data Analytics  |h [electronic resource] :  |b Strategies for the Quality Systems Analyst. 
260 |a La Vergne :  |b ASQ Quality Press,  |c 2021. 
300 |a 1 online resource (135 p.) 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title page -- CIP data -- Table of Contents -- List of Figures and Tables -- Introduction -- Chapter 1_An Introduction to -- Deep Learning -- When to Use This Technology -- Defining the Problem -- A Note About Technology -- Navigating Big Data -- Structure of This Book -- Chapter 2_Potential Data Problems and How They Arise -- Rapid Data Collection Concerns -- Format Concerns -- Off-line Testing Data -- Historical Data -- Expert Opinion -- HACCP Applications -- The Problem of Modified Data -- Prevalence of Data Problems -- Data Problem Impact 
505 8 |a Scoping the Issues Instead of All the Problems -- Chapter 3_Designed Experiments Versus Big Data Analysis -- Statistically Designed Experiments -- Chances of Observing Extreme Settings -- Big Data Limitations -- Costs of Experimentation -- Time Issues -- Coverage of Typical Conditions -- Measurement Error -- Expert Opinion -- Chapter 4_The Challenge of -- The Big Data Approach -- Evaluating the True Impact -- Types of Missing Values -- Big Data Processes -- More Data as a Solution -- The Importance of Identifying Missing Data -- Chapter 5_The Impact of Poor Randomization -- Randomization and Bias 
505 8 |a Practical Application -- Other Challenges -- Stability -- A Resampling Approach -- The Risk of Losing Data -- Chapter 6_Expert Opinion -- The Essential Difference of the Bayesian Approach -- Lessons from Extreme Priors -- Model Selection Impact -- Causal Analysis -- Chapter 7_Censored Data -- A Big Data Approach -- Shortcomings of Big Data and Censoring -- Correcting the Bias Problem -- Chapter 8_Other Potential Problems -- The Treatment of Outliers -- Missing Data Issues -- Decision Error -- Model Complexity -- Accumulation of Knowledge -- Some General Observations -- Conclusion -- End Notes 
505 8 |a Glossary -- Index -- About the Author 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Big data. 
650 0 |a Quality control. 
650 6 |a Données volumineuses. 
650 6 |a Qualité  |x Contrôle. 
650 7 |a quality control.  |2 aat 
650 7 |a Big data  |2 fast 
650 7 |a Quality control  |2 fast 
776 0 8 |i Print version:  |a Mawby, William D.  |t Navigating Big Data Analytics  |d La Vergne : ASQ Quality Press,c2021  |z 9781951058159 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7158790  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41065403 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7158790 
994 |a 92  |b IZTAP