Cargando…

Transformers and Inductors for Power Electronics Theory, Design and Applications.

Detalles Bibliográficos
Autor principal: Hurley, W. G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2013.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • TRANSFORMERS AND INDUCTORS FOR POWER ELECTRONICS: Theory, Design and Applications
  • Contents
  • About the Authors
  • Acknowledgements
  • Foreword
  • Preface
  • Nomenclature
  • Chapter 1: Introduction
  • 1.1 Historical Context
  • 1.2 The Laws of Electromagnetism
  • 1.2.1 Ampere's Magnetic Circuit Law
  • 1.2.2 Faraday's Law of Electromagnetic Induction
  • 1.3 Ferromagnetic Materials
  • 1.4 Losses in Magnetic Components
  • 1.4.1 Copper Loss
  • 1.4.2 Hysteresis Loss
  • 1.4.3 Eddy Current Loss
  • 1.4.4 Steinmetz Equation for Core Loss
  • 1.5 Magnetic Permeability
  • 1.6 Magnetic Materials for Power Electronics
  • 1.6.1 Soft Magnetic Materials
  • 1.6.2 The Properties of some Magnetic Materials
  • 1.7 Problems
  • References
  • Further Reading
  • Section I: Inductors
  • Chapter 2: Inductance
  • 2.1 Magnetic Circuits
  • 2.2 Self and Mutual Inductance
  • 2.3 Energy Stored in the Magnetic Field of an Inductor
  • 2.3.1 Why Use a Core?
  • 2.3.2 Distributed Gap
  • 2.4 Self and Mutual Inductance of Circular Coils
  • 2.4.1 Circular Filaments
  • 2.4.2 Circular Coils
  • 2.5 Fringing Effects around the Air Gap
  • 2.6 Problems
  • References
  • Further Reading
  • Chapter 3: Inductor Design
  • 3.1 The Design Equations
  • 3.1.1 Inductance
  • 3.1.2 Maximum Flux Density
  • 3.1.3 Winding Loss
  • 3.1.4 Optimum Effective Permeability
  • 3.1.5 Core Loss
  • 3.1.6 The Thermal Equation
  • 3.1.7 Current Density in the Windings
  • 3.1.8 Dimensional Analysis
  • 3.2 The Design Methodology
  • 3.3 Design Examples
  • 3.3.1 Example 3.1: Buck Converter with a Gapped Core
  • 3.3.2 Example 3.2: Forward Converter with a Toroidal Core
  • 3.4 Multiple Windings
  • 3.4.1 Example 3.3: Flyback Converter
  • 3.5 Problems
  • References
  • Further Reading
  • Section II: Transformers
  • Chapter 4: Transformers
  • 4.1 Ideal Transformer
  • 4.1.1 No Load Conditions
  • 4.1.2 Load Conditions
  • 4.1.3 Dot Convention
  • 4.1.4 Reflected Impedance
  • 4.1.5 Summary
  • 4.2 Practical Transformer
  • 4.2.1 Magnetizing Current and Core Loss
  • 4.2.2 Winding Resistance
  • 4.2.3 Magnetic Leakage
  • 4.2.4 Equivalent Circuit
  • 4.3 General Transformer Equations
  • 4.3.1 The Voltage Equation
  • 4.3.2 The Power Equation
  • 4.3.3 Winding Loss
  • 4.3.4 Core Loss
  • 4.3.5 Optimization
  • 4.4 Power Factor
  • 4.5 Problems
  • References
  • Further Reading
  • Chapter 5: Transformer Design
  • 5.1 The Design Equations
  • 5.1.1 Current Density in the Windings
  • 5.1.2 Optimum Flux Density unlimited by Saturation
  • 5.1.3 Optimum Flux Density limited by Saturation
  • 5.2 The Design Methodology
  • 5.3 Design Examples
  • 5.3.1 Example 5.1: Centre-Tapped Rectifier Transformer
  • 5.3.2 Example 5.2: Forward Converter
  • 5.3.3 Example 5.3: Push-Pull Converter
  • 5.4 Transformer Insulation
  • 5.4.1 Insulation Principles
  • 5.4.2 Practical Implementation
  • 5.5 Problems
  • Further Reading
  • Chapter 6: High Frequency Effects in the Windings
  • 6.1 Skin Effect Factor