Applied Linear Regression
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 2.6 Confidence Intervals and t-Tests
- 2.7 The Coefficient of Determination, R2
- 2.8 The Residuals
- CHAPTER 3: Multiple Regression
- 3.1 Adding a Regressor to a Simple Linear Regression Model
- 3.2 The Multiple Linear Regression Model
- 3.3 Predictors and Regressors
- 3.4 Ordinary Least Squares
- 3.5 Predictions, Fitted Values, and Linear Combinations
- CHAPTER 4: Interpretation of Main Effects
- 4.1 Understanding Parameter Estimates
- 4.2 Dropping Regressors
- 4.3 Experimentation versus Observation
- 4.4 Sampling from a Normal Population
- 4.5 More on R2
- CHAPTER 5: Complex Regressors
- 5.1 Factors
- 5.2 Many Factors
- 5.3 Polynomial Regression
- 5.4 Splines
- 5.5 Principal Components
- 5.6 Missing Data
- CHAPTER 6: Testing and Analysis of Variance
- 6.1 F-Tests
- 6.2 The Analysis of Variance
- 6.3 Comparisons of Means
- 6.4 Power and Non-Null Distributions
- 6.5 Wald Tests
- 6.6 Interpreting Tests
- CHAPTER 7: Variances
- 7.1 Weighted Least Squares
- 7.2 Misspecified Variances
- 7.3 General Correlation Structures
- 7.4 Mixed Models
- 7.5 Variance Stabilizing Transformations
- 7.6 The Delta Method
- 7.7 The Bootstrap
- CHAPTER 8: Transformations
- 8.1 Transformation Basics
- 8.2 A General Approach to Transformations
- 8.3 Transforming the Response
- 8.4 Transformations of Nonpositive Variables
- 8.5 Additive Models
- CHAPTER 9: Regression Diagnostics
- 9.1 The Residuals
- 9.2 Testing for Curvature
- 9.3 Nonconstant Variance
- 9.4 Outliers
- 9.5 Influence of Cases
- 9.6 Normality Assumption
- CHAPTER 10: Variable Selection
- 10.1 Variable Selection and Parameter Assessment
- 10.2 Variable Selection for Discovery
- 10.3 Model Selection for Prediction
- CHAPTER 11: Nonlinear Regression
- 11.1 Estimation for Nonlinear Mean Functions
- 11.2 Inference Assuming Large Samples
- 11.3 Starting Values
- 11.4 Bootstrap Inference
- 11.5 Further Reading
- CHAPTER 12: Binomial and Poisson Regression
- 12.1 Distributions for Counted Data
- 12.2 Regression Models For Counts
- 12.3 Poisson Regression
- 12.4 Transferring What You Know about Linear Models
- 12.5 Generalized Linear Models
- Appendix
- A.1 Website
- A.2 Means, Variances, Covariances, and Correlations
- A.3 Least Squares for Simple Regression
- A.4 Means and Variances of Least Squares Estimates