|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347029539 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2013 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d DXU
|d EBLCP
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781118594858
|
020 |
|
|
|a 1118594851
|
035 |
|
|
|a (OCoLC)1347029539
|
082 |
0 |
4 |
|a 519.5/36
|q OCoLC
|2 23/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Weisberg, Sanford.
|
245 |
1 |
0 |
|a Applied Linear Regression
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2013.
|
300 |
|
|
|a 1 online resource (346 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
8 |
|
|a 2.6 Confidence Intervals and t-Tests -- 2.7 The Coefficient of Determination, R2 -- 2.8 The Residuals -- CHAPTER 3: Multiple Regression -- 3.1 Adding a Regressor to a Simple Linear Regression Model -- 3.2 The Multiple Linear Regression Model -- 3.3 Predictors and Regressors -- 3.4 Ordinary Least Squares -- 3.5 Predictions, Fitted Values, and Linear Combinations -- CHAPTER 4: Interpretation of Main Effects -- 4.1 Understanding Parameter Estimates -- 4.2 Dropping Regressors -- 4.3 Experimentation versus Observation -- 4.4 Sampling from a Normal Population -- 4.5 More on R2
|
505 |
8 |
|
|a CHAPTER 5: Complex Regressors -- 5.1 Factors -- 5.2 Many Factors -- 5.3 Polynomial Regression -- 5.4 Splines -- 5.5 Principal Components -- 5.6 Missing Data -- CHAPTER 6: Testing and Analysis of Variance -- 6.1 F-Tests -- 6.2 The Analysis of Variance -- 6.3 Comparisons of Means -- 6.4 Power and Non-Null Distributions -- 6.5 Wald Tests -- 6.6 Interpreting Tests -- CHAPTER 7: Variances -- 7.1 Weighted Least Squares -- 7.2 Misspecified Variances -- 7.3 General Correlation Structures -- 7.4 Mixed Models -- 7.5 Variance Stabilizing Transformations -- 7.6 The Delta Method -- 7.7 The Bootstrap
|
505 |
8 |
|
|a CHAPTER 8: Transformations -- 8.1 Transformation Basics -- 8.2 A General Approach to Transformations -- 8.3 Transforming the Response -- 8.4 Transformations of Nonpositive Variables -- 8.5 Additive Models -- CHAPTER 9: Regression Diagnostics -- 9.1 The Residuals -- 9.2 Testing for Curvature -- 9.3 Nonconstant Variance -- 9.4 Outliers -- 9.5 Influence of Cases -- 9.6 Normality Assumption -- CHAPTER 10: Variable Selection -- 10.1 Variable Selection and Parameter Assessment -- 10.2 Variable Selection for Discovery -- 10.3 Model Selection for Prediction -- CHAPTER 11: Nonlinear Regression
|
505 |
8 |
|
|a 11.1 Estimation for Nonlinear Mean Functions -- 11.2 Inference Assuming Large Samples -- 11.3 Starting Values -- 11.4 Bootstrap Inference -- 11.5 Further Reading -- CHAPTER 12: Binomial and Poisson Regression -- 12.1 Distributions for Counted Data -- 12.2 Regression Models For Counts -- 12.3 Poisson Regression -- 12.4 Transferring What You Know about Linear Models -- 12.5 Generalized Linear Models -- Appendix -- A.1 Website -- A.2 Means, Variances, Covariances, and Correlations -- A.3 Least Squares for Simple Regression -- A.4 Means and Variances of Least Squares Estimates
|
500 |
|
|
|a A.5 Estimating E(Y|X) Using a Smoother
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
758 |
|
|
|i has work:
|a Applied linear regression (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFCCCP8XfbM6qck4KyX7xP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Weisberg, Sanford
|t Applied Linear Regression
|d Newark : John Wiley & Sons, Incorporated,c2013
|z 9781118386088
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103845
|z Texto completo
|
880 |
0 |
|
|6 505-00/(S
|a Intro -- Wiley Series in Probability and Statistics -- Title page -- Copyright page -- Dedication -- Preface to the Fourth Edition -- Acknowledgments -- CHAPTER 1: Scatterplots and Regression -- 1.1 Scatterplots -- 1.2 Mean Functions -- 1.3 Variance Functions -- 1.4 Summary Graph -- 1.5 Tools for Looking at Scatterplots -- 1.6 Scatterplot Matrices -- CHAPTER 2: Simple Linear Regression -- 2.1 Ordinary Least Squares Estimation -- 2.2 Least Squares Criterion -- 2.3 Estimating the Variance σ2 -- 2.4 Properties of Least Squares Estimates -- 2.5 Estimated Variances
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7103845
|
994 |
|
|
|a 92
|b IZTAP
|