Cargando…

Applied Linear Regression

Detalles Bibliográficos
Autor principal: Weisberg, Sanford
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2013.
Colección:New York Academy of Sciences Ser.
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347029539
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2013 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d DXU  |d EBLCP  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781118594858 
020 |a 1118594851 
035 |a (OCoLC)1347029539 
082 0 4 |a 519.5/36  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Weisberg, Sanford. 
245 1 0 |a Applied Linear Regression  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2013. 
300 |a 1 online resource (346 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 8 |a 2.6 Confidence Intervals and t-Tests -- 2.7 The Coefficient of Determination, R2 -- 2.8 The Residuals -- CHAPTER 3: Multiple Regression -- 3.1 Adding a Regressor to a Simple Linear Regression Model -- 3.2 The Multiple Linear Regression Model -- 3.3 Predictors and Regressors -- 3.4 Ordinary Least Squares -- 3.5 Predictions, Fitted Values, and Linear Combinations -- CHAPTER 4: Interpretation of Main Effects -- 4.1 Understanding Parameter Estimates -- 4.2 Dropping Regressors -- 4.3 Experimentation versus Observation -- 4.4 Sampling from a Normal Population -- 4.5 More on R2 
505 8 |a CHAPTER 5: Complex Regressors -- 5.1 Factors -- 5.2 Many Factors -- 5.3 Polynomial Regression -- 5.4 Splines -- 5.5 Principal Components -- 5.6 Missing Data -- CHAPTER 6: Testing and Analysis of Variance -- 6.1 F-Tests -- 6.2 The Analysis of Variance -- 6.3 Comparisons of Means -- 6.4 Power and Non-Null Distributions -- 6.5 Wald Tests -- 6.6 Interpreting Tests -- CHAPTER 7: Variances -- 7.1 Weighted Least Squares -- 7.2 Misspecified Variances -- 7.3 General Correlation Structures -- 7.4 Mixed Models -- 7.5 Variance Stabilizing Transformations -- 7.6 The Delta Method -- 7.7 The Bootstrap 
505 8 |a CHAPTER 8: Transformations -- 8.1 Transformation Basics -- 8.2 A General Approach to Transformations -- 8.3 Transforming the Response -- 8.4 Transformations of Nonpositive Variables -- 8.5 Additive Models -- CHAPTER 9: Regression Diagnostics -- 9.1 The Residuals -- 9.2 Testing for Curvature -- 9.3 Nonconstant Variance -- 9.4 Outliers -- 9.5 Influence of Cases -- 9.6 Normality Assumption -- CHAPTER 10: Variable Selection -- 10.1 Variable Selection and Parameter Assessment -- 10.2 Variable Selection for Discovery -- 10.3 Model Selection for Prediction -- CHAPTER 11: Nonlinear Regression 
505 8 |a 11.1 Estimation for Nonlinear Mean Functions -- 11.2 Inference Assuming Large Samples -- 11.3 Starting Values -- 11.4 Bootstrap Inference -- 11.5 Further Reading -- CHAPTER 12: Binomial and Poisson Regression -- 12.1 Distributions for Counted Data -- 12.2 Regression Models For Counts -- 12.3 Poisson Regression -- 12.4 Transferring What You Know about Linear Models -- 12.5 Generalized Linear Models -- Appendix -- A.1 Website -- A.2 Means, Variances, Covariances, and Correlations -- A.3 Least Squares for Simple Regression -- A.4 Means and Variances of Least Squares Estimates 
500 |a A.5 Estimating E(Y|X) Using a Smoother 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
758 |i has work:  |a Applied linear regression (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFCCCP8XfbM6qck4KyX7xP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Weisberg, Sanford  |t Applied Linear Regression  |d Newark : John Wiley & Sons, Incorporated,c2013  |z 9781118386088 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103845  |z Texto completo 
880 0 |6 505-00/(S  |a Intro -- Wiley Series in Probability and Statistics -- Title page -- Copyright page -- Dedication -- Preface to the Fourth Edition -- Acknowledgments -- CHAPTER 1: Scatterplots and Regression -- 1.1 Scatterplots -- 1.2 Mean Functions -- 1.3 Variance Functions -- 1.4 Summary Graph -- 1.5 Tools for Looking at Scatterplots -- 1.6 Scatterplot Matrices -- CHAPTER 2: Simple Linear Regression -- 2.1 Ordinary Least Squares Estimation -- 2.2 Least Squares Criterion -- 2.3 Estimating the Variance σ2 -- 2.4 Properties of Least Squares Estimates -- 2.5 Estimated Variances 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7103845 
994 |a 92  |b IZTAP