Methods and Applications of Linear Models Regression and the Analysis of Variance.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Methods and Applications of Linear Models
- Contents
- Preface to the Third Edition
- Preface to the Second Edition
- Preface to the First Edition
- PART I REGRESSION
- 1 Introduction to Linear Models
- 1.1 Background Information
- 1.2 Mathematical and Statistical Models
- 1.3 Definition of the Linear Model
- 1.4 Examples of Regression Models
- 1.4.1 Single-Variable, Regression Model
- 1.4.2 Regression Models with Several Inputs
- 1.4.3 Discrete Response Variables
- 1.4.4 Multivariate Linear Models
- 1.5 Concluding Comments
- Exercises
- 2 Regression on Functions of One Variable
- 2.1 The Simple Linear Regression Model
- 2.2 Parameter Estimation
- 2.2.1 Least Squares Estimation
- 2.2.2 Maximum Likelihood Estimation
- 2.2.3 Coded Data: Centering and Scaling
- 2.2.4 The Analysis of Variance Table
- 2.3 Properties of the Estimators and Test Statistics
- 2.3.1 Moments of Linear Functions of Random Variables
- 2.3.2 Moments of Least Squares Estimators
- 2.3.3 Distribution of the Least Squares Estimators
- 2.3.4 The Distribution of Test Statistics
- 2.4 The Analysis of Simple Linear Regression Models
- 2.4.1 Two Numerical Examples
- 2.4.2 A Test for Lack-of-Fit
- 2.4.3 Inference on the Parameters of the Model
- 2.4.4 Prediction and Prediction Intervals
- 2.5 Examining the Data and the Model
- 2.5.1 Residuals
- 2.5.2 Outliers, Extreme Points, and Influence
- 2.5.3 Normality, Independence, and Variance Homogeneity
- 2.6 Polynomial Regression Models
- 2.6.1 The Quadratic Model
- 2.6.2 Higher Ordered Polynomial Models
- 2.6.3 Orthogonal Polynomials
- 2.6.4 Regression through the Origin
- Exercises
- 3 Transforming the Data
- 3.1 The Need for Transformations
- 3.2 Weighted Least Squares
- 3.3 Variance Stabilizing Transformations
- 3.4 Transformations to Achieve a Linear Model
- 3.4.1 Transforming the Dependent Variable
- 3.4.2 Transforming the Predictors
- 3.5 Analysis of the Transformed Model
- 3.5.1 Transformations with Forbes Data
- Exercises
- 4 Regression on Functions of Several Variables
- 4.1 The Multiple Linear Regression Model
- 4.2 Preliminary Data Analysis
- 4.3 Analysis of the Multiple Linear Regression Model
- 4.3.1 Fitting the Model in Centered Form
- 4.3.2 Estimation and Analysis of the Original Data
- 4.3.3 Model Assessment and Residual Analysis
- 4.3.4 Prediction
- 4.3.5 Transforming the Response
- 4.4 Partial Correlation and Added-Variable Plots
- 4.4.1 Partial Correlation
- 4.4.2 Added-Variable Plots
- 4.4.3 Simple Versus Partial Correlation
- 4.5 Variable Selection
- 4.5.1 The Case of Orthogonal Predictors
- 4.5.2 Criteria for Deletion of Variables
- 4.5.3 Nonorthogonal Predictors
- 4.5.4 Computational Considerations
- 4.5.5 Selection Strategies
- 4.6 Model Specification
- 4.6.1 Application to Subset Selection
- 4.6.2 Improved Mean Squared Error