Detection Estimation and Modulation Theory, Part I Detection, Estimation, and Filtering Theory.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright
- Dedication
- Preface
- Preface to the First Edition
- Chapter 1: Introduction
- 1.1 Introduction
- 1.2 Topical Outline
- 1.3 Possible Approaches
- 1.4 Organization
- Chapter 2: Classical Detection Theory
- 2.1 Introduction
- 2.2 Simple Binary Hypothesis Tests
- 2.3 M Hypotheses
- 2.4 Performance Bounds and Approximations
- 2.5 Monte Carlo Simulation
- 2.6 Summary
- 2.7 Problems
- Chapter 3: General Gaussian Detection
- 3.1 Detection of Gaussian Random Vectors
- 3.2 Equal Covariance Matrices
- 3.3 Equal Mean Vectors
- 3.4 General Gaussian
- 3.5 M Hypotheses
- 3.6 Summary
- 3.7 Problems
- Chapter 4: Classical Parameter Estimation
- 4.1 Introduction
- 4.2 Scalar Parameter Estimation
- 4.3 Multiple Parameter Estimation
- 4.4 Global Bayesian Bounds
- 4.5 Composite Hypotheses
- 4.6 Summary
- 4.7 Problems
- Chapter 5: General Gaussian Estimation
- 5.1 Introduction
- 5.2 Nonrandom Parameters
- 5.3 Random Parameters
- 5.4 Sequential Estimation
- 5.5 Summary
- 5.6 Problems
- Chapter 6: Representation of Random Processes
- 6.1 Introduction
- 6.2 Orthonormal Expansions: Deterministic Signals
- 6.3 Random Process Characterization
- 6.4 Homogeous Integral Equations and Eigenfunctions
- 6.5 Vector Random Processes
- 6.6 Summary
- 6.7 Problems
- Chapter 7: Detection of Signals-Estimation of Signal Parameters
- 7.1 Introduction
- 7.2 Detection and Estimation in White Gaussian Noise
- 7.3 Detection and Estimation in Nonwhite Gaussian Noise
- 7.4 Signals with Unwanted Parameters: The Composite Hypothesis Problem
- 7.5 Multiple Channels
- 7.6 Multiple Parameter Estimation
- 7.7 Summary
- 7.8 Problems
- Chapter 8: Estimation of Continuous-Time Random Processes
- 8.1 Optimum Linear Processors
- 8.2 Realizable Linear Filters: Stationary Processes, Infinite Past: Wiener Filters
- 8.3 Gaussian-Markov Processes: Kalman Filter
- 8.4 Bayesian Estimation of Non-Gaussian Models
- 8.5 Summary
- 8.6 Problems
- Chapter 9: Estimation of Discrete-Time Random Processes
- 9.1 Introduction
- 9.2 Discrete-Time Wiener Filtering
- 9.3 Discrete-Time Kalman Filter
- 9.4 Summary
- 9.5 Problems
- Chapter 10: Detection of Gaussian Signals
- 10.1 Introduction
- 10.2 Detection of Continuous-Time Gaussian Processes
- 10.3 Detection of Discrete-Time Gaussian Processes
- 10.4 Summary
- 10.5 Problems
- Chapter 11: Epilogue
- 11.1 Classical Detection and Estimation Theory
- 11.2 Representation of Random Processes
- 11.3 Detection of Signals and Estimation of Signal Parameters
- 11.4 Linear Estimation of Random Processes
- 11.5 Observations
- 11.6 Conclusion
- Appendix A: Probability Distributions and Mathematical Functions
- Appendix B: Example Index
- References
- Index