Cargando…

Web Mining A Synergic Approach Resorting to Classifications and Clustering.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kumbhar, V. S.
Otros Autores: Oza, K. S., Kamat, R. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, 2017.
Colección:River Publishers Series in Information Science and Technology Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347029277
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 221015s2017 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d REDDC  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9788793379848 
020 |a 8793379846 
035 |a (OCoLC)1347029277 
050 4 |a QA76.9.D343  |b .K863 2016 
082 0 4 |a 006.3/12 
049 |a UAMI 
100 1 |a Kumbhar, V. S. 
245 1 0 |a Web Mining  |h [electronic resource] :  |b A Synergic Approach Resorting to Classifications and Clustering. 
260 |a Aalborg :  |b River Publishers,  |c 2017. 
300 |a 1 online resource (232 p.). 
490 1 |a River Publishers Series in Information Science and Technology Ser. 
500 |a Description based upon print version of record. 
505 0 |a Front Cover -- Half Title -- RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE AND TECHNOLOGY -- Title Page -- Web Mining: A Synergic Approach Resorting to Classifications and Clustering -- Copyright Page -- Contents -- Preface -- Acknowledgment -- List of Figures -- List of Tables -- List of Graphs -- List of Abbreviations -- Chapter 1 -- Introduction -- 1.1 Basic Notion of Data Mining -- 1.2 Knowledge Discovery:The Very Rationale Behind Data Mining -- 1.3 Challenges in the Development of Data Mining -- 1.3.1 Scalability -- 1.3.2 High Dimensionality -- 1.3.3 Heterogeneous and Complex Data 
505 8 |a 1.3.4 Data Ownership and Distribution -- 1.3.5 Non-Traditional Analysis -- 1.4 Importance of Data Mining -- 1.5 Classification of Data Mining Systems -- 1.5.1 The Databases Mined -- 1.5.2 The Knowledge Mined -- 1.5.3 The Techniques Utilized -- 1.5.4 The Application Adopted -- 1.6 Generic Architecture of Data Mining System -- 1.7 Major Issues in Data Mining -- 1.7.1 Mining Methodology and User Interaction Issues -- 1.7.2 Performance Issues -- 1.7.3 Issues Relating to the Diversity of Database Types -- 1.8 Data Mining Strategies -- 1.8.1 Classification -- 1.8.2 Association -- 1.8.3 Clustering 
505 8 |a 1.8.3.1 k-Means algorithm -- 1.8.4 Estimation -- 1.9 Data Mining: Ever Increasing Range of Applications -- 1.9.1 Games -- 1.9.2 Business -- 1.9.3 Science and Engineering -- 1.9.4 Human Rights -- 1.9.5 Medical Data Mining -- 1.9.6 Spatial Data Mining -- 1.9.7 Challenges in Spatial Mining -- 1.9.8 Temporal Data Mining -- 1.9.9 Sensor Data Mining -- 1.9.10 Visual Data Mining -- 1.9.11 Music Data Mining -- 1.9.12 Pattern Mining -- 1.9.13 Subject-based Data Mining -- 1.9.14 Knowledge Grid -- 1.10 Trends in Data Mining -- 1.10.1 Application Exploration 
505 8 |a 1.10.2 Scalable and Interactive Data Mining Methods -- 1.10.3 Integration of Data Mining with Database Systems, Data Warehouse Systems, and Web Database Systems -- 1.10.4 Standardization of Data Mining Query Language -- 1.10.5 Visual Data Mining -- 1.10.6 New Methods for Mining Complex Types of Data -- 1.10.7 Biological Data Mining -- 1.10.8 Data Mining and Software Engineering -- 1.10.9 Web Mining -- 1.10.10 Distributed Data Mining -- 1.10.11 Real-Time Data Mining -- 1.10.12 Multi-Database Data Mining -- 1.10.13 Privacy Protection and Information Security in Data Mining 
505 8 |a 1.11 Classification Techniques in Data Mining -- 1.11.1 Definition of the Classification -- 1.11.2 Issues Regarding Classification -- 1.11.3 Evaluation Methods for Classification -- 1.11.4 Classifications Techniques -- 1.11.4.1 Tree structure -- 1.11.4.2 Rule-based algorithm -- 1.11.4.3 Distance-based algorithms -- 1.11.4.4 Neural networks-based algorithms -- 1.11.4.5 Statistical-based algorithms -- 1.12 Applications of Classifications -- 1.12.1 Target Marketing -- 1.12.2 Disease Diagnosis -- 1.12.3 Supervised Event Detection -- 1.12.4 Multimedia Data Analysis -- 1.12.5 Biological Data Analysis 
500 |a 1.12.6 Document Categorization and Filtering 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Web databases. 
650 0 |a Data mining. 
650 0 |a Cluster analysis. 
650 6 |a Bases de données sur le Web. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Classification automatique (Statistique) 
650 7 |a Cluster analysis  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Web databases  |2 fast 
700 1 |a Oza, K. S. 
700 1 |a Kamat, R. K. 
758 |i has work:  |a Web mining (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYJHCq8C3pyGgPRKk4pqMd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kumbhar, V. S.  |t Web Mining  |d Aalborg : River Publishers,c2017 
830 0 |a River Publishers Series in Information Science and Technology Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=30169259  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30169259 
994 |a 92  |b IZTAP