Nonlinear Finite Elements for Continua and Structures
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2014.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Nonlinear Finite Elements for Continua and Structures Second Edition
- Copyright
- Contents
- Foreword
- Preface
- List of Boxes
- 1 Introduction
- 1.1 Nonlinear Finite Elements in Design
- 1.2 Related Books and a Brief History of Nonlinear Finite Elements
- 1.3 Notation
- 1.3.1 Indicial Notation
- 1.3.2 Tensor Notation
- 1.3.3 Functions
- 1.3.4 Matrix Notation
- 1.4 Mesh Descriptions
- 1.5 Classification of Partial Differential Equations
- 1.6 Exercises
- 2 Lagrangian and Eulerian Finite Elements in One Dimension
- 2.1 Introduction
- 2.2 Governing Equations for Total Lagrangian Formulation
- 2.2.1 Nomenclature
- 2.2.2 Motion and Strain Measure
- 2.2.3 Stress Measure
- 2.2.4 Governing Equations
- 2.2.5 Momentum Equation in Terms of Displacements
- 2.2.6 Continuity of Functions
- 2.2.7 Fundamental Theorem of Calculus
- 2.3 Weak Form for Total Lagrangian Formulation
- 2.3.1 Strong Form to Weak Form
- 2.3.2 Weak Form to Strong Form
- 2.3.3 Physical Names of Virtual Work Terms
- 2.3.4 Principle of Virtual Work
- 2.4 Finite Element Discretization in Total Lagrangian Formulation
- 2.4.1 Finite Element Approximations
- 2.4.2 Nodal Forces
- 2.4.3 Semidiscrete Equations
- 2.4.4 Initial Conditions
- 2.4.5 Least-Square Fit to Initial Conditions
- 2.4.6 Diagonal Mass Matrix
- 2.5 Element and Global Matrices
- 2.6 Governing Equations for Updated Lagrangian Formulation
- 2.6.1 Boundary and Interior Continuity Conditions
- 2.6.2 Initial Conditions
- 2.7 Weak Form for Updated Lagrangian Formulation
- 2.8 Element Equations for Updated Lagrangian Formulation
- 2.8.1 Finite Element Approximation
- 2.8.2 Element Coordinates
- 2.8.3 Internal and External Nodal Forces
- 2.8.4 Mass Matrix
- 2.8.5 Equivalence of Updated and Total Lagrangian Formulations
- 2.8.6 Assembly, Boundary Conditions and Initial Conditions
- 2.8.7 Mesh Distortion
- 2.9 Governing Equations for Eulerian Formulation
- 2.10 Weak Forms for Eulerian Mesh Equations
- 2.11 Finite Element Equations
- 2.11.1 Momentum Equation
- 2.12 Solution Methods
- 2.13 Summary
- 2.14 Exercises
- 3 Continuum Mechanics
- 3.1 Introduction
- 3.2 Deformation and Motion
- 3.2.1 Definitions
- 3.2.2 Eulerian and Lagrangian Coordinates
- 3.2.3 Motion
- 3.2.4 Eulerian and Lagrangian Descriptions
- 3.2.5 Displacement, Velocity and Acceleration
- 3.2.6 Deformation Gradient
- 3.2.7 Conditions on Motion
- 3.2.8 Rigid Body Rotation and Coordinate Transformations
- 3.3 Strain Measures
- 3.3.1 Green Strain Tensor
- 3.3.2 Rate-of-Deformation
- 3.3.3 Rate-of-Deformation in Terms of Rate of Green Strain
- 3.4 Stress Measures
- 3.4.1 Definitions of Stresses
- 3.4.2 Transformation between Stresses
- 3.4.3 Corotational Stress and Rate-of-Deformation
- 3.5 Conservation Equations
- 3.5.1 Conservation Laws
- 3.5.2 Gauss's Theorem