Introduction to Computational Contact Mechanics A Geometrical Approach.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2015.
|
Colección: | New York Academy of Sciences Ser.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Series Preface
- Preface
- Acknowledgments
- Part I Theory
- Chapter 1 Introduction with a Spring-Mass Frictionless Contact System
- 1.1 Structural Part-Deflection of Spring-Mass System
- 1.2 Contact Part-Non-Penetration into Rigid Plane
- 1.3 Contact Formulations
- 1.3.1 Lagrange Multiplier Method
- 1.3.2 Penalty Method
- 1.3.3 Augmented Lagrangian Method
- Chapter 2 General Formulation of a Contact Problem
- 2.1 Structural Part-Formulation of a Problem in Linear Elasticity
- 2.1.1 Strong Formulation of Equilibrium
- 2.1.2 Weak Formulation of Equilibrium
- 2.2 Formulation of the Contact Part (Signorini's problem)
- Chapter 3 Differential Geometry
- 3.1 Curve and its Properties
- 3.1.1 Example: Circle and its Properties
- 3.2 Frenet Formulas in 2D
- 3.3 Description of Surfaces by Gauss Coordinates
- 3.3.1 Tangent and Normal Vectors: Surface Coordinate System
- 3.3.2 Basis Vectors: Metric Tensor and its Applications
- 3.3.3 Relationships between Co- and Contravariant Basis Vectors
- 3.3.4 Co- and Contravariant Representation of a Vector on a Surface
- 3.3.5 Curvature Tensor and Structure of the Surface
- 3.4 Differential Properties of Surfaces
- 3.4.1 The Weingarten Formula
- 3.4.2 The Gauss-Codazzi Formula
- 3.4.3 Covariant Derivatives on the Surface
- 3.4.4 Example: Geometrical Analysis of a Cylindrical Surface
- Chapter 4 Geometry and Kinematics for an Arbitrary Two Body Contact Problem
- 4.1 Local Coordinate System
- 4.2 Closest Point Projection (CPP) Procedure-Analysis
- 4.2.1 Existence and Uniqueness of CPP Procedure
- 4.2.2 Numerical Solution of CPP Procedure in 2D
- 4.2.3 Numerical Solution of CPP Procedure in 3D