Cargando…

Introduction to Computational Contact Mechanics A Geometrical Approach.

Detalles Bibliográficos
Autor principal: Konyukhov, Alexander
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Series Preface
  • Preface
  • Acknowledgments
  • Part I Theory
  • Chapter 1 Introduction with a Spring-Mass Frictionless Contact System
  • 1.1 Structural Part-Deflection of Spring-Mass System
  • 1.2 Contact Part-Non-Penetration into Rigid Plane
  • 1.3 Contact Formulations
  • 1.3.1 Lagrange Multiplier Method
  • 1.3.2 Penalty Method
  • 1.3.3 Augmented Lagrangian Method
  • Chapter 2 General Formulation of a Contact Problem
  • 2.1 Structural Part-Formulation of a Problem in Linear Elasticity
  • 2.1.1 Strong Formulation of Equilibrium
  • 2.1.2 Weak Formulation of Equilibrium
  • 2.2 Formulation of the Contact Part (Signorini's problem)
  • Chapter 3 Differential Geometry
  • 3.1 Curve and its Properties
  • 3.1.1 Example: Circle and its Properties
  • 3.2 Frenet Formulas in 2D
  • 3.3 Description of Surfaces by Gauss Coordinates
  • 3.3.1 Tangent and Normal Vectors: Surface Coordinate System
  • 3.3.2 Basis Vectors: Metric Tensor and its Applications
  • 3.3.3 Relationships between Co- and Contravariant Basis Vectors
  • 3.3.4 Co- and Contravariant Representation of a Vector on a Surface
  • 3.3.5 Curvature Tensor and Structure of the Surface
  • 3.4 Differential Properties of Surfaces
  • 3.4.1 The Weingarten Formula
  • 3.4.2 The Gauss-Codazzi Formula
  • 3.4.3 Covariant Derivatives on the Surface
  • 3.4.4 Example: Geometrical Analysis of a Cylindrical Surface
  • Chapter 4 Geometry and Kinematics for an Arbitrary Two Body Contact Problem
  • 4.1 Local Coordinate System
  • 4.2 Closest Point Projection (CPP) Procedure-Analysis
  • 4.2.1 Existence and Uniqueness of CPP Procedure
  • 4.2.2 Numerical Solution of CPP Procedure in 2D
  • 4.2.3 Numerical Solution of CPP Procedure in 3D