|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347028997 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2015 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d DXU
|d EBLCP
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781118770634
|
020 |
|
|
|a 1118770633
|
035 |
|
|
|a (OCoLC)1347028997
|
082 |
0 |
4 |
|a 620.1/05
|q OCoLC
|2 23/eng/20230216
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Konyukhov, Alexander.
|
245 |
1 |
0 |
|a Introduction to Computational Contact Mechanics
|h [electronic resource] :
|b A Geometrical Approach.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2015.
|
300 |
|
|
|a 1 online resource (305 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Acknowledgments -- Part I Theory -- Chapter 1 Introduction with a Spring-Mass Frictionless Contact System -- 1.1 Structural Part-Deflection of Spring-Mass System -- 1.2 Contact Part-Non-Penetration into Rigid Plane -- 1.3 Contact Formulations -- 1.3.1 Lagrange Multiplier Method -- 1.3.2 Penalty Method -- 1.3.3 Augmented Lagrangian Method -- Chapter 2 General Formulation of a Contact Problem -- 2.1 Structural Part-Formulation of a Problem in Linear Elasticity -- 2.1.1 Strong Formulation of Equilibrium
|
505 |
8 |
|
|a 2.1.2 Weak Formulation of Equilibrium -- 2.2 Formulation of the Contact Part (Signorini's problem) -- Chapter 3 Differential Geometry -- 3.1 Curve and its Properties -- 3.1.1 Example: Circle and its Properties -- 3.2 Frenet Formulas in 2D -- 3.3 Description of Surfaces by Gauss Coordinates -- 3.3.1 Tangent and Normal Vectors: Surface Coordinate System -- 3.3.2 Basis Vectors: Metric Tensor and its Applications -- 3.3.3 Relationships between Co- and Contravariant Basis Vectors -- 3.3.4 Co- and Contravariant Representation of a Vector on a Surface
|
505 |
8 |
|
|a 3.3.5 Curvature Tensor and Structure of the Surface -- 3.4 Differential Properties of Surfaces -- 3.4.1 The Weingarten Formula -- 3.4.2 The Gauss-Codazzi Formula -- 3.4.3 Covariant Derivatives on the Surface -- 3.4.4 Example: Geometrical Analysis of a Cylindrical Surface -- Chapter 4 Geometry and Kinematics for an Arbitrary Two Body Contact Problem -- 4.1 Local Coordinate System -- 4.2 Closest Point Projection (CPP) Procedure-Analysis -- 4.2.1 Existence and Uniqueness of CPP Procedure -- 4.2.2 Numerical Solution of CPP Procedure in 2D -- 4.2.3 Numerical Solution of CPP Procedure in 3D
|
500 |
|
|
|a 6.6.1 Example: Independence of the Stabilization Parameter
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
758 |
|
|
|i has work:
|a Introduction to computational contact mechanics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGGgCk7g69DtgbFPwGVvjK
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Konyukhov, Alexander
|t Introduction to Computational Contact Mechanics
|d Newark : John Wiley & Sons, Incorporated,c2015
|z 9781118770658
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104061
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 4.3 Contact Kinematics -- 4.3.1 2D Contact Kinematics using Natural Coordinates s and ζ -- 4.3.2 Contact Kinematics in 3D Coordinate System -- Chapter 5 Abstract Form of Formulations in Computational Mechanics -- 5.1 Operator Necessary for the Abstract Formulation -- 5.1.1 Examples of Operators in Mechanics -- 5.1.2 Examples of Various Problems -- 5.2 Abstract Form of the Iterative Method -- 5.3 Fixed Point Theorem (Banach) -- 5.4 Newton Iterative Solution Method -- 5.4.1 Geometrical Interpretation of the Newton Iterative Method -- 5.5 Abstract Form for Contact Formulations
|
880 |
8 |
|
|6 505-00/(S
|a 5.5.1 Lagrange Multiplier Method in Operator Form -- 5.5.2 Penalty Method in Operator Form -- Chapter 6 Weak Formulation and Consistent Linearization -- 6.1 Weak Formulation in the Local Coordinate System -- 6.2 Regularization with Penalty Method -- 6.3 Consistent Linearization -- 6.3.1 Linearization of Normal Part -- 6.4 Application to Lagrange Multipliers and to Following Forces -- 6.4.1 Linearization for the Lagrange Multipliers Method -- 6.4.2 Linearization for Following Forces: Normal Force or Pressure -- 6.5 Linearization of the Convective Variation δξ -- 6.6 Nitsche Method
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7104061
|
994 |
|
|
|a 92
|b IZTAP
|