Cargando…

Introduction to Computational Contact Mechanics A Geometrical Approach.

Detalles Bibliográficos
Autor principal: Konyukhov, Alexander
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347028997
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2015 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d DXU  |d EBLCP  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781118770634 
020 |a 1118770633 
035 |a (OCoLC)1347028997 
082 0 4 |a 620.1/05  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Konyukhov, Alexander. 
245 1 0 |a Introduction to Computational Contact Mechanics  |h [electronic resource] :  |b A Geometrical Approach. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2015. 
300 |a 1 online resource (305 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Acknowledgments -- Part I Theory -- Chapter 1 Introduction with a Spring-Mass Frictionless Contact System -- 1.1 Structural Part-Deflection of Spring-Mass System -- 1.2 Contact Part-Non-Penetration into Rigid Plane -- 1.3 Contact Formulations -- 1.3.1 Lagrange Multiplier Method -- 1.3.2 Penalty Method -- 1.3.3 Augmented Lagrangian Method -- Chapter 2 General Formulation of a Contact Problem -- 2.1 Structural Part-Formulation of a Problem in Linear Elasticity -- 2.1.1 Strong Formulation of Equilibrium 
505 8 |a 2.1.2 Weak Formulation of Equilibrium -- 2.2 Formulation of the Contact Part (Signorini's problem) -- Chapter 3 Differential Geometry -- 3.1 Curve and its Properties -- 3.1.1 Example: Circle and its Properties -- 3.2 Frenet Formulas in 2D -- 3.3 Description of Surfaces by Gauss Coordinates -- 3.3.1 Tangent and Normal Vectors: Surface Coordinate System -- 3.3.2 Basis Vectors: Metric Tensor and its Applications -- 3.3.3 Relationships between Co- and Contravariant Basis Vectors -- 3.3.4 Co- and Contravariant Representation of a Vector on a Surface 
505 8 |a 3.3.5 Curvature Tensor and Structure of the Surface -- 3.4 Differential Properties of Surfaces -- 3.4.1 The Weingarten Formula -- 3.4.2 The Gauss-Codazzi Formula -- 3.4.3 Covariant Derivatives on the Surface -- 3.4.4 Example: Geometrical Analysis of a Cylindrical Surface -- Chapter 4 Geometry and Kinematics for an Arbitrary Two Body Contact Problem -- 4.1 Local Coordinate System -- 4.2 Closest Point Projection (CPP) Procedure-Analysis -- 4.2.1 Existence and Uniqueness of CPP Procedure -- 4.2.2 Numerical Solution of CPP Procedure in 2D -- 4.2.3 Numerical Solution of CPP Procedure in 3D 
500 |a 6.6.1 Example: Independence of the Stabilization Parameter 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
758 |i has work:  |a Introduction to computational contact mechanics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGGgCk7g69DtgbFPwGVvjK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Konyukhov, Alexander  |t Introduction to Computational Contact Mechanics  |d Newark : John Wiley & Sons, Incorporated,c2015  |z 9781118770658 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104061  |z Texto completo 
880 8 |6 505-00/(S  |a 4.3 Contact Kinematics -- 4.3.1 2D Contact Kinematics using Natural Coordinates s and ζ -- 4.3.2 Contact Kinematics in 3D Coordinate System -- Chapter 5 Abstract Form of Formulations in Computational Mechanics -- 5.1 Operator Necessary for the Abstract Formulation -- 5.1.1 Examples of Operators in Mechanics -- 5.1.2 Examples of Various Problems -- 5.2 Abstract Form of the Iterative Method -- 5.3 Fixed Point Theorem (Banach) -- 5.4 Newton Iterative Solution Method -- 5.4.1 Geometrical Interpretation of the Newton Iterative Method -- 5.5 Abstract Form for Contact Formulations 
880 8 |6 505-00/(S  |a 5.5.1 Lagrange Multiplier Method in Operator Form -- 5.5.2 Penalty Method in Operator Form -- Chapter 6 Weak Formulation and Consistent Linearization -- 6.1 Weak Formulation in the Local Coordinate System -- 6.2 Regularization with Penalty Method -- 6.3 Consistent Linearization -- 6.3.1 Linearization of Normal Part -- 6.4 Application to Lagrange Multipliers and to Following Forces -- 6.4.1 Linearization for the Lagrange Multipliers Method -- 6.4.2 Linearization for Following Forces: Normal Force or Pressure -- 6.5 Linearization of the Convective Variation δξ -- 6.6 Nitsche Method 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7104061 
994 |a 92  |b IZTAP