Probability With Applications and R.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2013.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Probability: With Applications and R
- Copyright
- Contents
- Preface
- Acknowledgments
- Introduction
- 1 First Principles
- 1.1 Random Experiment, Sample Space, Event
- 1.2 What Is a Probability?
- 1.3 Probability Function
- 1.4 Properties of Probabilities
- 1.5 Equally Likely Outcomes
- 1.6 Counting I
- 1.7 Problem-Solving Strategies: Complements, Inclusion-Exclusion
- 1.8 Random Variables
- 1.9 A Closer Look at Random Variables
- 1.10 A First Look at Simulation
- 1.11 Summary
- Exercises
- 2 Conditional Probability
- 2.1 Conditional Probability
- 2.2 New Information Changes the Sample Space
- 2.3 Finding P(A and B)
- 2.3.1 Birthday Problem
- 2.4 Conditioning and the Law of Total Probability
- 2.5 Bayes Formula and Inverting a Conditional Probability
- 2.6 Summary
- Exercises
- 3 Independence and Independent Trials
- 3.1 Independence and Dependence
- 3.2 Independent Random Variables
- 3.3 Bernoulli Sequences
- 3.4 Counting II
- 3.5 Binomial Distribution
- 3.6 Stirling's Approximation
- 3.7 Poisson Distribution
- 3.7.1 Poisson Approximation of Binomial Distribution
- 3.7.2 Poisson Limit
- 3.8 Product Spaces
- 3.9 Summary
- Exercises
- 4 Random Variables
- 4.1 Expectation
- 4.2 Functions of Random Variables
- 4.3 Joint Distributions
- 4.4 Independent Random Variables
- 4.4.1 Sums of Independent Random Variables
- 4.5 Linearity of Expectation
- 4.5.1 Indicator Random Variables
- 4.6 Variance and Standard Deviation
- 4.7 Covariance and Correlation
- 4.8 Conditional Distribution
- 4.8.1 Introduction to Conditional Expectation
- 4.9 Properties of Covariance and Correlation
- 4.10 Expectation of a Function of a Random Variable
- 4.11 Summary
- Exercises
- 5 A Bounty of Discrete Distributions
- 5.1 Geometric Distribution
- 5.1.1 Memorylessness
- 5.1.2 Coupon Collecting and Tiger Counting
- 5.1.3 How R Codes the Geometric Distribution
- 5.2 Negative Binomial-Up from the Geometric
- 5.3 Hypergeometric-Sampling Without Replacement
- 5.4 From Binomial to Multinomial
- 5.4.1 Multinomial Counts
- 5.5 Benford's Law
- 5.6 Summary
- Exercises
- 6 Continuous Probability
- 6.1 Probability Density Function
- 6.2 Cumulative Distribution Function
- 6.3 Uniform Distribution
- 6.4 Expectation and Variance
- 6.5 Exponential Distribution
- 6.5.1 Memorylessness
- 6.6 Functions of Random Variables I
- 6.6.1 Simulating a Continuous Random Variable
- 6.7 Joint Distributions
- 6.8 Independence
- 6.8.1 Accept-Reject Method
- 6.9 Covariance, Correlation
- 6.10 Functions of Random Variables II
- 6.10.1 Maximums and Minimums
- 6.10.2 Sums of Random Variables
- 6.11 Geometric Probability
- 6.12 Summary
- Exercises
- 7 Continuous Distributions
- 7.1 Normal Distribution
- 7.1.1 Standard Normal Distribution
- 7.1.2 Normal Approximation of Binomial Distribution
- 7.1.3 Sums of Independent Normals
- 7.2 Gamma Distribution