Introduction to Linear Regression Analysis
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2012.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Contents
- Series
- Title Page
- Copyright
- PREFACE
- CHAPTER 1: INTRODUCTION
- 1.1 REGRESSION AND MODEL BUILDING
- 1.2 DATA COLLECTION
- 1.3 USES OF REGRESSION
- 1.4 ROLE OF THE COMPUTER
- CHAPTER 2: SIMPLE LINEAR REGRESSION
- 2.1 SIMPLE LINEAR REGRESSION MODEL
- 2.2 LEAST
- SQUARES ESTIMATION OF THE PARAMETERS
- 2.3 HYPOTHESIS TESTING ON THE SLOPE AND INTERCEPT
- 2.4 INTERVAL ESTIMATION IN SIMPLE LINEAR REGRESSION
- 2.5 PREDICTION OF NEW OBSERVATIONS
- 2.6 COEFFICIENT OF DETERMINATION
- 2.7 A SERVICE INDUSTRY APPLICATION OF REGRESSION
- 2.8 USING SAS® AND R FOR SIMPLE LINEAR REGRESSION
- 2.9 SOME CONSIDERATIONS IN THE USE OF REGRESSION
- 2.10 REGRESSION THROUGH THE ORIGIN
- 2.11 ESTIMATION BY MAXIMUM LIKELIHOOD
- 2.12 CASE WHERE THE REGRESSOR X IS RANDOM
- PROBLEMS
- CHAPTER 3: MULTIPLE LINEAR REGRESSION
- 3.1 MULTIPLE REGRESSION MODELS
- 3.2 ESTIMATION OF THE MODEL PARAMETERS
- 3.3 HYPOTHESIS TESTING IN MULTIPLE LINEAR REGRESSION
- 3.4 CONFIDENCE INTERVALS IN MULTIPLE REGRESSION
- 3.5 PREDICTION OF NEW OBSERVATIONS
- 3.6 A MULTIPLE REGRESSION MODEL FOR THE PATIENT SATISFACTION DATA
- 3.7 USING SAS AND R FOR BASIC MULTIPLE LINEAR REGRESSION
- 3.8 HIDDEN EXTRAPOLATION IN MULTIPLE REGRESSION
- 3.9 STANDARDIZED REGRESSION COEFFICIENTS
- 3.10 MULTICOLLINEARITY
- 3.11 WHY DO REGRESSION COEFFICIENTS HAVE THE WRONG SIGN?
- PROBLEMS
- CHAPTER 4: MODEL ADEQUACY CHECKING
- 4.1 INTRODUCTION
- 4.2 RESIDUAL ANALYSIS
- 4.3 PRESS STATISTIC
- 4.4 DETECTION AND TREATMENT OF OUTLIERS
- 4.5 LACK OF FIT OF THE REGRESSION MODEL
- PROBLEMS
- CHAPTER 5: TRANSFORMATIONS AND WEIGHTING TO CORRECT MODEL INADEQUACIES
- 5.1 INTRODUCTION
- 5.2 VARIANCE
- STABILIZING TRANSFORMATIONS
- 5.3 TRANSFORMATIONS TO LINEARIZE THE MODEL
- 5.4 ANALYTICAL METHODS FOR SELECTING A TRANSFORMATION
- 5.5 GENERALIZED AND WEIGHTED LEAST SQUARES
- 5.6 REGRESSION MODELS WITH RANDOM EFFECTS
- PROBLEMS
- CHAPTER 6: DIAGNOSTICS FOR LEVERAGE AND INFLUENCE
- 6.1 IMPORTANCE OF DETECTING INFLUENTIAL OBSERVATIONS
- 6.2 LEVERAGE
- 6.3 MEASURES OF INFLUENCE: COOK'S D
- 6.4 MEASURES OF INFLUENCE: DFFITS AND DFBETAS
- 6.5 A MEASURE OF MODEL PERFORMANCE
- 6.6 DETECTING GROUPS OF INFLUENTIAL OBSERVATIONS
- 6.7 TREATMENT OF INFLUENTIAL OBSERVATIONS
- PROBLEMS
- CHAPTER 7: POLYNOMIAL REGRESSION MODELS
- 7.1 INTRODUCTION
- 7.2 POLYNOMIAL MODELS IN ONE VARIABLE
- 7.3 NONPARAMETRIC REGRESSION
- 7.4 POLYNOMIAL MODELS IN TWO OR MORE VARIABLES
- 7.5 ORTHOGONAL POLYNOMIALS
- PROBLEMS
- CHAPTER 8: INDICATOR VARIABLES
- 8.1 GENERAL CONCEPT OF INDICATOR VARIABLES
- 8.2 COMMENTS ON THE USE OF INDICATOR VARIABLES
- 8.3 REGRESSION APPROACH TO ANALYSIS OF VARIANCE
- PROBLEMS
- CHAPTER 9: MULTICOLLINEARITY
- 9.1 INTRODUCTION
- 9.2 SOURCES OF MULTICOLLINEARITY
- 9.3 EFFECTS OF MULTICOLLINEARITY
- 9.4 MULTICOLLINEARITY DIAGNOSTICS