Cargando…

Essential Statistics for the Pharmaceutical Sciences

Detalles Bibliográficos
Autor principal: Rowe, Philip
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Statistical packages
  • About the website
  • Part 1 Presenting data
  • Chapter 1 Data types
  • 1.1 Does it really matter?
  • 1.2 Interval scale data
  • 1.3 Ordinal scale data
  • 1.4 Nominal scale data
  • 1.5 Structure of this book
  • 1.6 Chapter summary
  • Chapter 2 Data presentation
  • 2.1 Numerical tables
  • 2.2 Bar charts and histograms
  • 2.3 Pie charts
  • 2.4 Scatter plots
  • 2.5 Pictorial symbols
  • 2.6 Chapter summary
  • Part 2 Interval-scale data
  • Chapter 3 Descriptive statistics for interval scale data
  • 3.1 Summarising data sets
  • 3.2 Indicators of central tendency: Mean, median and mode
  • 3.3 Describing variability
  • standard deviation and coefficient of variation
  • 3.4 Quartiles
  • Another way to describe data
  • 3.5 Describing ordinal data
  • 3.6 Using computer packages to generate descriptive statistics
  • 3.7 Chapter summary
  • Chapter 4 The normal distribution
  • 4.1 What is a normal distribution?
  • 4.2 Identifying data that are not normally distributed
  • 4.3 Proportions of individuals within 1SD or 2SD of the mean
  • 4.4 Skewness and kurtosis
  • 4.5 Chapter summary
  • 4.6 Appendix: Power, sample size and the problem of attempting to test for a normal distribution
  • Chapter 5 Sampling from populations: The standard error of the mean
  • 5.1 Samples and populations
  • 5.2 From sample to population
  • 5.3 Types of sampling error
  • 5.4 What factors control the extent of random sampling error when estimating a population mean?
  • 5.5 Estimating likely sampling error
  • The SEM
  • 5.6 Offsetting sample size against SD
  • 5.7 Chapter summary
  • Chapter 6 95% Confidence interval for the mean and data transformation
  • 6.1 What is a confidence interval?
  • 6.2 How wide should the interval be?
  • 6.3 What do we mean by '95%' confidence?
  • 6.4 Calculating the interval width
  • 6.5 A long series of samples and 95% C.I.s
  • 6.6 How sensitive is the width of the C.I. to changes in the SD, the sample size or the required level of confidence?
  • 6.7 Two statements
  • 6.8 One-sided 95% C.I.s
  • 6.9 The 95% C.I. for the difference between two treatments
  • 6.10 The need for data to follow a normal distribution and data transformation
  • 6.11 Chapter summary
  • Chapter 7 The two-sample t-test (1): Introducing hypothesis tests
  • 7.1 The two-sample t-test
  • an example of an hypothesis test
  • 7.2 Significance
  • 7.3 The risk of a false positive finding
  • 7.4 What aspects of the data will influence whether or not we obtain a significant outcome?
  • 7.5 Requirements for applying a two-sample t-test
  • 7.6 Performing and reporting the test
  • 7.7 Chapter summary
  • Chapter 8 The two-sample t-test (2): The dreaded P value
  • 8.1 Measuring how significant a result is
  • 8.2 P values
  • 8.3 Two ways to define significance?
  • 8.4 Obtaining the P value
  • 8.5 P values or 95% confidence intervals?
  • 8.6 Chapter summary