Cargando…

Free Space Optical Systems Engineering Design and Analysis.

Detalles Bibliográficos
Autor principal: Stotts, Larry B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2017.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • About the Companion Website
  • Chapter 1 Mathematical Preliminaries
  • 1.1 Introduction
  • 1.2 Linear Algebra
  • 1.2.1 Matrices and Vectors
  • 1.2.2 Linear Operations
  • 1.2.3 Traces, Determinants, and Inverses
  • 1.2.4 Inner Products, Norms, and Orthogonality
  • 1.2.5 Eigenvalues, Eigenvectors, and Rank
  • 1.2.6 Quadratic Forms and Positive Definite Matrices
  • 1.2.7 Gradients, Jacobians, and Hessians
  • 1.3 Fourier Series
  • 1.3.1 Real Fourier Series
  • 1.3.2 Complex Fourier Series
  • 1.3.3 Effects of Finite Fourier Series Use
  • 1.3.4 Some Useful Properties of Fourier Series
  • 1.4 Fourier Transforms
  • 1.4.1 Some General Properties
  • 1.5 Dirac Delta Function
  • 1.6 Probability Theory
  • 1.6.1 Axioms of Probability
  • 1.6.2 Conditional Probabilities
  • 1.6.3 Probability and Cumulative Density Functions
  • 1.6.4 Probability Mass Function
  • 1.6.5 Expectation and Moments of a Scalar Random Variable
  • 1.6.6 Joint PDF and CDF of Two Random Variables
  • 1.6.7 Independent Random Variables
  • 1.6.8 Vector-Valued Random Variables
  • 1.6.9 Gaussian Random Variables
  • 1.6.10 Quadratic and Quartic Forms
  • 1.6.11 Chi-Squared Distributed Random Variable
  • 1.6.12 Binomial Distribution
  • 1.6.13 Poisson Distribution
  • 1.6.14 Random Processes
  • 1.7 Decibels
  • 1.8 Problems
  • References
  • Chapter 2 Fourier Optics Basics
  • 2.1 Introduction
  • 2.2 The Maxwell Equations
  • 2.3 The Rayleigh-Sommerfeld-Debye Theory of Diffraction
  • 2.4 The Huygens-Fresnel-Kirchhoff Theory of Diffraction
  • 2.5 Fraunhofer Diffraction
  • 2.6 Bringing Fraunhofer Diffraction into the Near Field
  • 2.7 Imperfect Imaging
  • 2.8 The Rayleigh Resolution Criterion
  • 2.9 The Sampling Theorem
  • 2.10 Problems
  • References
  • Chapter 3 Geometrical Optics
  • 3.1 Introduction
  • 3.2 The Foundations of Geometrical Optics
  • Eikonal Equation and Fermat Principle
  • 3.3 Refraction and Reflection of Light Rays
  • 3.4 Geometrical Optics Nomenclature
  • 3.5 Imaging System Design Basics
  • 3.6 Optical Invariant
  • 3.7 Another View of Lens Theory
  • 3.8 Apertures and Field Stops
  • 3.8.1 Aperture Stop
  • 3.8.2 Entrance and Exit Pupils
  • 3.8.3 Field Stop and Chief and Marginal Rays
  • 3.8.4 Entrance and Exit Windows
  • 3.8.5 Baffles
  • 3.9 Problems
  • References
  • Chapter 4 Radiometry
  • 4.1 Introduction
  • 4.2 Basic Geometrical Definitions
  • 4.3 Radiometric Parameters
  • 4.3.1 Radiant Flux (Radiant Power)
  • 4.3.2 Radiant Intensity
  • 4.3.3 Radiance
  • 4.3.4 Étendue
  • 4.3.5 Radiant Flux Density (Irradiance and Radiant Exitance)
  • 4.3.6 Bidirectional Reflectance Distribution Function
  • 4.3.7 Directional Hemispheric Reflectance
  • 4.3.8 Specular Surfaces
  • 4.4 Lambertian Surfaces and Albedo
  • 4.5 Spectral Radiant Emittance and Power
  • 4.6 Irradiance from a Lambertian Source
  • 4.7 The Radiometry of Images
  • 4.8 Blackbody Radiation Sources
  • 4.9 Problems
  • References