Free Space Optical Systems Engineering Design and Analysis.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2017.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- About the Companion Website
- Chapter 1 Mathematical Preliminaries
- 1.1 Introduction
- 1.2 Linear Algebra
- 1.2.1 Matrices and Vectors
- 1.2.2 Linear Operations
- 1.2.3 Traces, Determinants, and Inverses
- 1.2.4 Inner Products, Norms, and Orthogonality
- 1.2.5 Eigenvalues, Eigenvectors, and Rank
- 1.2.6 Quadratic Forms and Positive Definite Matrices
- 1.2.7 Gradients, Jacobians, and Hessians
- 1.3 Fourier Series
- 1.3.1 Real Fourier Series
- 1.3.2 Complex Fourier Series
- 1.3.3 Effects of Finite Fourier Series Use
- 1.3.4 Some Useful Properties of Fourier Series
- 1.4 Fourier Transforms
- 1.4.1 Some General Properties
- 1.5 Dirac Delta Function
- 1.6 Probability Theory
- 1.6.1 Axioms of Probability
- 1.6.2 Conditional Probabilities
- 1.6.3 Probability and Cumulative Density Functions
- 1.6.4 Probability Mass Function
- 1.6.5 Expectation and Moments of a Scalar Random Variable
- 1.6.6 Joint PDF and CDF of Two Random Variables
- 1.6.7 Independent Random Variables
- 1.6.8 Vector-Valued Random Variables
- 1.6.9 Gaussian Random Variables
- 1.6.10 Quadratic and Quartic Forms
- 1.6.11 Chi-Squared Distributed Random Variable
- 1.6.12 Binomial Distribution
- 1.6.13 Poisson Distribution
- 1.6.14 Random Processes
- 1.7 Decibels
- 1.8 Problems
- References
- Chapter 2 Fourier Optics Basics
- 2.1 Introduction
- 2.2 The Maxwell Equations
- 2.3 The Rayleigh-Sommerfeld-Debye Theory of Diffraction
- 2.4 The Huygens-Fresnel-Kirchhoff Theory of Diffraction
- 2.5 Fraunhofer Diffraction
- 2.6 Bringing Fraunhofer Diffraction into the Near Field
- 2.7 Imperfect Imaging
- 2.8 The Rayleigh Resolution Criterion
- 2.9 The Sampling Theorem
- 2.10 Problems
- References
- Chapter 3 Geometrical Optics
- 3.1 Introduction
- 3.2 The Foundations of Geometrical Optics
- Eikonal Equation and Fermat Principle
- 3.3 Refraction and Reflection of Light Rays
- 3.4 Geometrical Optics Nomenclature
- 3.5 Imaging System Design Basics
- 3.6 Optical Invariant
- 3.7 Another View of Lens Theory
- 3.8 Apertures and Field Stops
- 3.8.1 Aperture Stop
- 3.8.2 Entrance and Exit Pupils
- 3.8.3 Field Stop and Chief and Marginal Rays
- 3.8.4 Entrance and Exit Windows
- 3.8.5 Baffles
- 3.9 Problems
- References
- Chapter 4 Radiometry
- 4.1 Introduction
- 4.2 Basic Geometrical Definitions
- 4.3 Radiometric Parameters
- 4.3.1 Radiant Flux (Radiant Power)
- 4.3.2 Radiant Intensity
- 4.3.3 Radiance
- 4.3.4 Étendue
- 4.3.5 Radiant Flux Density (Irradiance and Radiant Exitance)
- 4.3.6 Bidirectional Reflectance Distribution Function
- 4.3.7 Directional Hemispheric Reflectance
- 4.3.8 Specular Surfaces
- 4.4 Lambertian Surfaces and Albedo
- 4.5 Spectral Radiant Emittance and Power
- 4.6 Irradiance from a Lambertian Source
- 4.7 The Radiometry of Images
- 4.8 Blackbody Radiation Sources
- 4.9 Problems
- References