Cargando…

Data Mining and Predictive Analytics

Detalles Bibliográficos
Autor principal: Larose, Daniel T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347027954
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2015 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ 
020 |a 9781118868676 
020 |a 1118868676 
035 |a (OCoLC)1347027954 
082 0 4 |a 006.3/12  |q OCoLC 
049 |a UAMI 
100 1 |a Larose, Daniel T. 
245 1 0 |a Data Mining and Predictive Analytics  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2015. 
300 |a 1 online resource (827 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Contents -- Preface -- Acknowledgments -- Part I Data Preparation -- Chapter 1 An Introduction to Data Mining and Predictive Analytics -- 1.1 What is Data Mining? What is Predictive Analytics? -- 1.2 Wanted: Data Miners -- 1.3 The Need for Human Direction of Data Mining -- 1.4 The Cross-Industry Standard Process for Data Mining: CRISP-DM -- 1.4.1 CRISP-DM: The Six Phases -- 1.5 Fallacies of Data Mining -- 1.6 What Tasks Can Data Mining Accomplish -- 1.6.1 Description -- 1.6.2 Estimation -- 1.6.3 Prediction -- 1.6.4 Classification -- 1.6.5 Clustering -- 1.6.6 Association -- The R Zone 
505 8 |a R References -- Exercises -- Chapter 2 Data Preprocessing -- 2.1 Why do We Need to Preprocess the Data? -- 2.2 Data Cleaning -- 2.3 Handling Missing Data -- 2.4 Identifying Misclassifications -- 2.5 Graphical Methods for Identifying Outliers -- 2.6 Measures of Center and Spread -- 2.7 Data Transformation -- 2.8 Min-Max Normalization -- 2.9 Z-Score Standardization -- 2.10 Decimal Scaling -- 2.11 Transformations to Achieve Normality -- 2.12 Numerical Methods for Identifying Outliers -- 2.13 Flag Variables -- 2.14 Transforming Categorical Variables into Numerical Variables 
505 8 |a 2.15 Binning Numerical Variables -- 2.16 Reclassifying Categorical Variables -- 2.17 Adding an Index Field -- 2.18 Removing Variables that are not Useful -- 2.19 Variables that Should Probably not be Removed -- 2.20 Removal of Duplicate Records -- 2.21 A Word About ID Fields -- The R Zone -- R Reference -- Exercises -- Chapter 3 Exploratory Data Analysis -- 3.1 Hypothesis Testing Versus Exploratory Data Analysis -- 3.2 Getting to Know the Data Set -- 3.3 Exploring Categorical Variables -- 3.4 Exploring Numeric Variables -- 3.5 Exploring Multivariate Relationships 
505 8 |a 3.6 Selecting Interesting Subsets of the Data for Further Investigation -- 3.7 Using EDA to Uncover Anomalous Fields -- 3.8 Binning Based on Predictive Value -- 3.9 Deriving New Variables: Flag Variables -- 3.10 Deriving New Variables: Numerical Variables -- 3.11 Using EDA to Investigate Correlated Predictor Variables -- 3.12 Summary of Our EDA -- The R Zone -- R References -- Exercises -- Chapter 4 Dimension-Reduction Methods -- 4.1 Need for Dimension-Reduction in Data Mining -- 4.2 Principal Components Analysis -- 4.3 Applying PCA to the Houses Data Set 
505 8 |a 4.4 How Many Components Should We Extract? -- 4.4.1 The Eigenvalue Criterion -- 4.4.2 The Proportion of Variance Explained Criterion -- 4.4.3 The Minimum Communality Criterion -- 4.4.4 The Scree Plot Criterion -- 4.5 Profiling the Principal Components -- 4.6 Communalities -- 4.6.1 Minimum Communality Criterion -- 4.7 Validation of the Principal Components -- 4.8 Factor Analysis -- 4.9 Applying Factor Analysis to the Adult Data Set -- 4.10 Factor Rotation -- 4.11 User-Defined Composites -- 4.12 An Example of a User-Defined Composite -- The R Zone -- R References -- Exercises 
500 |a Part II Statistical Analysis 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a Data mining and predictive analytics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGcY4896hY9DXvVRBHWXcX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Larose, Daniel T.  |t Data Mining and Predictive Analytics  |d Newark : John Wiley & Sons, Incorporated,c2015  |z 9781118116197 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104155  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7104155 
994 |a 92  |b IZTAP