Mathematical Statistics with Resampling and R
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2011.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Half Title page
- Title page
- Copyright page
- Preface
- Acknowledgments
- Chapter 1: Data and Case Studies
- 1.1 Case Study: Flight Delays
- 1.2 Case Study: Birth Weights of Babies
- 1.3 Case Study: Verizon Repair Times
- 1.4 Sampling
- 1.5 Parameters and Statistics
- 1.6 Case Study: General Social Survey
- 1.7 Sample Surveys
- 1.8 Case Study: Beer and Hot Wings
- 1.9 Case Study: Black Spruce Seedlings
- 1.10 Studies
- 1.11 Exercises
- Chapter 2: Exploratory Data Analysis
- 2.1 Basic Plots
- 2.2 Numeric Summaries
- 2.3 Boxplots
- 2.4 Quantiles and Normal Quantile Plots
- 2.5 Empirical Cumulative Distribution Functions
- 2.6 Scatter Plots
- 2.7 Skewness and Kurtosis
- 2.8 Exercises
- Chapter 3: Hypothesis Testing
- 3.1 Introduction to Hypothesis Testing
- 3.2 Hypotheses
- 3.3 Permutation Tests
- 3.4 Contingency Tables
- 3.5 Chi-Square Test of Independence
- 3.6 Test of Homogeneity
- 3.7 Goodness-of-Fit: All Parameters Known
- 3.8 Goodness-of-Fit: Some Parameters Estimated
- 3.9 Exercises
- Chapter 4: Sampling Distributions
- 4.1 Sampling Distributions
- 4.2 Calculating Sampling Distributions
- 4.3 The Central Limit Theorem
- 4.4 Exercises
- Chapter 5: The Bootstrap
- 5.1 Introduction to the Bootstrap
- 5.2 The Plug-in Principle
- 5.3 Bootstrap Percentile Intervals
- 5.4 Two Sample Bootstrap
- 5.5 Other Statistics
- 5.6 Bias
- 5.7 Monte Carlo Sampling: The "Second Bootstrap Principle"
- 5.8 Accuracy of Bootstrap Distributions
- 5.9 How Many Bootstrap Samples are Needed?
- 5.10 Exercises
- Chapter 6: Estimation
- 6.1 Maximum Likelihood Estimation
- 6.2 Method of Moments
- 6.3 Properties of Estimators
- 6.4 Exercises
- Chapter 7: Classical Inference: Confidence Intervals
- 7.1 Confidence Intervals for Means
- 7.2 Confidence Intervals in General
- 7.3 One-Sided Confidence Intervals
- 7.4 Confidence Intervals for Proportions
- 7.5 Bootstrap t Confidence Intervals
- 7.6 Exercises
- Chapter 8: Classical Inference: Hypothesis Testing
- 8.1 Hypothesis Tests for Means and Proportions
- 8.2 Type I and Type Ii Errors
- 8.3 More on Testing
- 8.4 Likelihood Ratio Tests
- 8.5 Exercises
- Chapter 9: Regression
- 9.1 Covariance
- 9.2 Correlation
- 9.3 Least-Squares Regression
- 9.4 The Simple Linear Model
- 9.5 Resampling Correlation and Regression
- 9.6 Logistic Regression
- 9.7 Exercises
- Chapter 10: Bayesian Methods
- 10.1 Bayes'Theorem
- 10.2 Binomial Data, Discrete Prior Distributions
- 10.3 Binomial Data, Continuous Prior Distributions
- 10.4 Continuous Data
- 10.5 Sequential Data
- 10.6 Exercises
- Chapter 11: Additional Topics
- 11.1 Smoothed Bootstrap
- 11.2 Parametric Bootstrap
- 11.3 The Delta Method
- 11.4 Stratified Sampling
- 11.5 Computational Issues in Bayesian Analysis
- 11.6 Monte Carlo Integration
- 11.7 Importance Sampling
- 11.8 Exercises
- Appendix A: Review of Probability
- A.1 Basic Probability