Quantum Mechanics Fundamentals and Applications to Technology.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
1996.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- QUANTUM MECHANICS Fundamentals and Applications to Technology
- CONTENTS
- PREFACE
- INTRODUCTION
- QUANTUM MECHANICS AND TECHNOLOGY
- Some Technology Needs and Challenges
- GUIDELINES FOR THE INSTRUCTOR
- SOME IMPORTANT REFERENCES
- Historical Development of Quantum Mechanics
- Textbooks
- General
- 1 A JOLT FOR CLASSICAL PHYSICS
- 1.1 INTRODUCTION
- 1.1.1 A Bit of History
- 1.1.2 Some Simple Questions
- 1.2 SOME EXPERIMENTS THAT DEFIED CLASSICAL PHYSICS
- 1.3 A PREVIEW OF THE TRANSITION FROM CLASSICAL TO QUANTUM PHYSICS
- 1.3.1 Newtonian Mechanics
- 1.3.2 Classical Wave Phenomena
- 1.3.3 The Wave-Particle Duality: A Hint in Optics
- 1.4 MODERN CLASSICAL MECHANICS: A BRIEF OVERVIEW
- 1.4.1 The Lagrangian Equations
- 1.4.2 Hamilton Equations of Motion
- 1.4.3 The Poisson Bracket Description
- 1.4.4 The Hamilton-Jacobi Formulation
- 1.5 THE HAMILTON-JACOBI THEORY AND WAVE MECHANICS
- 1.6 CHAPTER SUMMARY
- 2 THE MATHEMATICAL FORMULATION OF QUANTUM MECHANICS
- 2.1 INTRODUCTION
- 2.1.1 What Are We Trying to Do?
- 2.2 THE SCHRÖDINGER EQUATION
- 2.3 THE WAVE AMPLITUDE
- 2.3.1 Normalization of the Wavefunction
- 2.6.5 Important Representations in Quantum Mechanics
- 2.6.6 Hilbert Space
- 2.6.7 Hermitian and Unitary Matrices
- 2.7 EQUATIONS OF MOTION
- 2.8 CHAPTER SUMMARY
- 2.9 PROBLEMS
- 3 PARTICLES IN SIMPLE POTENTIALS
- 3.1 INTRODUCTION
- 3.2 THE FREE PARTICLE PROBLEM AND DENSITY OF STATES
- 3.2.1 Density of States for a Three-Dimensional System
- 3.2.2 Density of States in Sub-Three-Dimensional Systems
- 3.3 PARTICLE IN A QUANTUM WELL
- 3.3.1 The Square Quantum Well
- 3.3.2 Particle in a Triangular Quantum Well
- 3.3.3 Particle in an Arbitrary Quantum Well
- 3.3.4 Application Example: Confined Levels in Semiconductor Transistors
- 3.4 PARTICLE IN A PERIODIC POTENTIAL: BLOCH THEOREM
- 3.4.1 The Kronig-Penney Model for Bandstructure
- 3.4.2 Significance of the k-Vector
- 3.5 THE HARMONIC OSCILLATOR
- 3.6 THE MATRIX FORMULATION OF THE HARMONIC OSCILLATOR
- 3.7 HARMONIC OSCILLATOR: QUANTUM AND CLASSICAL TREATMENT
- 3.8 CHAPTER SUMMARY
- 3.9 PROBLEMS
- 4 THE TUNNELING PROBLEM
- 4.1 INTRODUCTION
- 4.2 THE GENERAL TUNNELING PROBLEM
- 4.2.1 Approaches to the Tunneling Problem
- 4.3 STATIONARY STATE APPROACH TO TUNNELING