Cargando…

Quantum Mechanics Fundamentals and Applications to Technology.

Detalles Bibliográficos
Autor principal: Singh, Jasprit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 1996.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • QUANTUM MECHANICS Fundamentals and Applications to Technology
  • CONTENTS
  • PREFACE
  • INTRODUCTION
  • QUANTUM MECHANICS AND TECHNOLOGY
  • Some Technology Needs and Challenges
  • GUIDELINES FOR THE INSTRUCTOR
  • SOME IMPORTANT REFERENCES
  • Historical Development of Quantum Mechanics
  • Textbooks
  • General
  • 1 A JOLT FOR CLASSICAL PHYSICS
  • 1.1 INTRODUCTION
  • 1.1.1 A Bit of History
  • 1.1.2 Some Simple Questions
  • 1.2 SOME EXPERIMENTS THAT DEFIED CLASSICAL PHYSICS
  • 1.3 A PREVIEW OF THE TRANSITION FROM CLASSICAL TO QUANTUM PHYSICS
  • 1.3.1 Newtonian Mechanics
  • 1.3.2 Classical Wave Phenomena
  • 1.3.3 The Wave-Particle Duality: A Hint in Optics
  • 1.4 MODERN CLASSICAL MECHANICS: A BRIEF OVERVIEW
  • 1.4.1 The Lagrangian Equations
  • 1.4.2 Hamilton Equations of Motion
  • 1.4.3 The Poisson Bracket Description
  • 1.4.4 The Hamilton-Jacobi Formulation
  • 1.5 THE HAMILTON-JACOBI THEORY AND WAVE MECHANICS
  • 1.6 CHAPTER SUMMARY
  • 2 THE MATHEMATICAL FORMULATION OF QUANTUM MECHANICS
  • 2.1 INTRODUCTION
  • 2.1.1 What Are We Trying to Do?
  • 2.2 THE SCHRÖDINGER EQUATION
  • 2.3 THE WAVE AMPLITUDE
  • 2.3.1 Normalization of the Wavefunction
  • 2.6.5 Important Representations in Quantum Mechanics
  • 2.6.6 Hilbert Space
  • 2.6.7 Hermitian and Unitary Matrices
  • 2.7 EQUATIONS OF MOTION
  • 2.8 CHAPTER SUMMARY
  • 2.9 PROBLEMS
  • 3 PARTICLES IN SIMPLE POTENTIALS
  • 3.1 INTRODUCTION
  • 3.2 THE FREE PARTICLE PROBLEM AND DENSITY OF STATES
  • 3.2.1 Density of States for a Three-Dimensional System
  • 3.2.2 Density of States in Sub-Three-Dimensional Systems
  • 3.3 PARTICLE IN A QUANTUM WELL
  • 3.3.1 The Square Quantum Well
  • 3.3.2 Particle in a Triangular Quantum Well
  • 3.3.3 Particle in an Arbitrary Quantum Well
  • 3.3.4 Application Example: Confined Levels in Semiconductor Transistors
  • 3.4 PARTICLE IN A PERIODIC POTENTIAL: BLOCH THEOREM
  • 3.4.1 The Kronig-Penney Model for Bandstructure
  • 3.4.2 Significance of the k-Vector
  • 3.5 THE HARMONIC OSCILLATOR
  • 3.6 THE MATRIX FORMULATION OF THE HARMONIC OSCILLATOR
  • 3.7 HARMONIC OSCILLATOR: QUANTUM AND CLASSICAL TREATMENT
  • 3.8 CHAPTER SUMMARY
  • 3.9 PROBLEMS
  • 4 THE TUNNELING PROBLEM
  • 4.1 INTRODUCTION
  • 4.2 THE GENERAL TUNNELING PROBLEM
  • 4.2.1 Approaches to the Tunneling Problem
  • 4.3 STATIONARY STATE APPROACH TO TUNNELING