Cargando…

Mechanical Vibrations Theory and Application to Structural Dynamics.

Detalles Bibliográficos
Autor principal: Geradin, Michel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2015.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • TItle Page
  • Copyright
  • Contents
  • Foreword
  • Preface
  • Introduction
  • Suggested Bibliography
  • List of main symbols and definitions
  • Chapter 1 Analytical Dynamics of Discrete Systems
  • Definitions
  • 1.1 Principle of virtual work for a particle
  • 1.1.1 Nonconstrained particle
  • 1.1.2 Constrained particle
  • 1.2 Extension to a system of particles
  • 1.2.1 Virtual work principle for N particles
  • 1.2.2 The kinematic constraints
  • 1.2.3 Concept of generalized displacements
  • 1.3 Hamilton's principle for conservative systems and Lagrange equations
  • 1.3.1 Structure of kinetic energy and classification of inertia forces
  • 1.3.2 Energy conservation in a system with scleronomic constraints
  • 1.3.3 Classification of generalized forces
  • 1.4 Lagrange equations in the general case
  • 1.5 Lagrange equations for impulsive loading
  • 1.5.1 Impulsive loading of a mass particle
  • 1.5.2 Impulsive loading for a system of particles
  • 1.6 Dynamics of constrained systems
  • 1.7 Exercises
  • 1.7.1 Solved exercises
  • 1.7.2 Selected exercises
  • References
  • Chapter 2 Undamped Vibrations of n-Degree-of-Freedom Systems
  • Definitions
  • 2.1 Linear vibrations about an equilibrium configuration
  • 2.1.1 Vibrations about a stable equilibrium position
  • 2.1.2 Free vibrations about an equilibrium configuration corresponding to steady motion
  • 2.1.3 Vibrations about a neutrally stable equilibrium position
  • 2.2 Normal modes of vibration
  • 2.2.1 Systems with a stable equilibrium configuration
  • 2.2.2 Systems with a neutrally stable equilibrium position
  • 2.3 Orthogonality of vibration eigenmodes
  • 2.3.1 Orthogonality of elastic modes with distinct frequencies
  • 2.3.2 Degeneracy theorem and generalized orthogonality relationships
  • 2.3.3 Orthogonality relationships including rigid-body modes
  • 2.4 Vector and matrix spectral expansions using eigenmodes
  • 2.5 Free vibrations induced by nonzero initial conditions
  • 2.5.1 Systems with a stable equilibrium position
  • 2.5.2 Systems with neutrally stable equilibrium position
  • 2.6 Response to applied forces: forced harmonic response
  • 2.6.1 Harmonic response, impedance and admittance matrices
  • 2.6.2 Mode superposition and spectral expansion of the admittance matrix
  • 2.6.3 Statically exact expansion of the admittance matrix
  • 2.6.4 Pseudo-resonance and resonance
  • 2.6.5 Normal excitation modes
  • 2.7 Response to applied forces: response in the time domain
  • 2.7.1 Mode superposition and normal equations
  • 2.7.2 Impulse response and time integration of the normal equations
  • 2.7.3 Step response and time integration of the normal equations
  • 2.7.4 Direct integration of the transient response
  • 2.8 Modal approximations of dynamic responses
  • 2.8.1 Response truncation and mode displacement method
  • 2.8.2 Mode acceleration method