Visual Data Mining The VisMiner Approach.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2012.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Visual Data Mining: THE VISMINER APPROACH
- Contents
- Preface
- Acknowledgments
- 1. Introduction
- Data Mining Objectives
- Introduction to VisMiner
- The Data Mining Process
- Initial Data Exploration
- Dataset Preparation
- Algorithm Selection and Application
- Model Evaluation
- Summary
- 2. Initial Data Exploration and Dataset Preparation Using VisMiner
- The Rationale for Visualizations
- Tutorial
- Using VisMiner
- Initializing VisMiner
- Initializing the Slave Computers
- Opening a Dataset
- Viewing Summary Statistics
- Exercise 2.1
- The Correlation Matrix
- Exercise 2.2
- The Histogram
- The Scatter Plot
- Exercise 2.3
- The Parallel Coordinate Plot
- Exercise 2.4
- Extracting Sub-populations Using the Parallel Coordinate Plot
- Exercise 2.5
- The Table Viewer
- The Boundary Data Viewer
- Exercise 2.6
- The Boundary Data Viewer with Temporal Data
- Exercise 2.7
- Summary
- 3. Advanced Topics in Initial Exploration and Dataset Preparation Using VisMiner
- Missing Values
- Missing Values
- An Example
- Exploration Using the Location Plot
- Exercise 3.1
- Dataset Preparation
- Creating Computed Columns
- Exercise 3.2
- Aggregating Data for Observation Reduction
- Exercise 3.3
- Combining Datasets
- Exercise 3.4
- Outliers and Data Validation
- Range Checks
- Fixed Range Outliers
- Distribution Based Outliers
- Computed Checks
- Exercise 3.5
- Feasibility and Consistency Checks
- Data Correction Outside of VisMiner
- Distribution Consistency
- Pattern Checks
- A Pattern Check of Experimental Data
- Exercise 3.6
- Summary
- 4. Prediction Algorithms for Data Mining
- Decision Trees
- Stopping the Splitting Process
- A Decision Tree Example
- Using Decision Trees
- Decision Tree Advantages
- Limitations
- Artificial Neural Networks
- Overfitting the Model
- Moving Beyond Local Optima
- ANN Advantages and Limitations
- Support Vector Machines
- Data Transformations
- Moving Beyond Two-dimensional Predictors
- SVM Advantages and Limitations
- Summary
- 5. Classification Models in VisMiner
- Dataset Preparation
- Tutorial
- Building and Evaluating Classification Models
- Model Evaluation
- Exercise 5.1
- Prediction Likelihoods
- Classification Model Performance
- Interpreting the ROC Curve
- Classification Ensembles
- Model Application
- Summary
- Exercise 5.2
- Exercise 5.3
- 6. Regression Analysis
- The Regression Model
- Correlation and Causation
- Algorithms for Regression Analysis
- Assessing Regression Model Performance
- Model Validity
- Looking Beyond R2
- Polynomial Regression
- Artificial Neural Networks for Regression Analysis
- Dataset Preparation
- Tutorial
- A Regression Model for Home Appraisal
- Modeling with the Right Set of Observations
- Exercise 6.1
- ANN Modeling
- The Advantage of ANN Regression
- Top-Down Attribute Selection
- Issues in Model Interpretation
- Model Validation
- Model Application
- Summary