Cargando…

Visual Data Mining The VisMiner Approach.

Detalles Bibliográficos
Autor principal: Anderson, Russell K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2012.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347027483
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2012 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ 
020 |a 9781118439234 
020 |a 1118439236 
035 |a (OCoLC)1347027483 
082 4 |a 006.3/12  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Anderson, Russell K. 
245 1 0 |a Visual Data Mining  |h [electronic resource] :  |b The VisMiner Approach. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2012. 
300 |a 1 online resource (210 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Visual Data Mining: THE VISMINER APPROACH -- Contents -- Preface -- Acknowledgments -- 1. Introduction -- Data Mining Objectives -- Introduction to VisMiner -- The Data Mining Process -- Initial Data Exploration -- Dataset Preparation -- Algorithm Selection and Application -- Model Evaluation -- Summary -- 2. Initial Data Exploration and Dataset Preparation Using VisMiner -- The Rationale for Visualizations -- Tutorial -- Using VisMiner -- Initializing VisMiner -- Initializing the Slave Computers -- Opening a Dataset -- Viewing Summary Statistics -- Exercise 2.1 -- The Correlation Matrix 
505 8 |a Exercise 2.2 -- The Histogram -- The Scatter Plot -- Exercise 2.3 -- The Parallel Coordinate Plot -- Exercise 2.4 -- Extracting Sub-populations Using the Parallel Coordinate Plot -- Exercise 2.5 -- The Table Viewer -- The Boundary Data Viewer -- Exercise 2.6 -- The Boundary Data Viewer with Temporal Data -- Exercise 2.7 -- Summary -- 3. Advanced Topics in Initial Exploration and Dataset Preparation Using VisMiner -- Missing Values -- Missing Values -- An Example -- Exploration Using the Location Plot -- Exercise 3.1 -- Dataset Preparation -- Creating Computed Columns -- Exercise 3.2 
505 8 |a Aggregating Data for Observation Reduction -- Exercise 3.3 -- Combining Datasets -- Exercise 3.4 -- Outliers and Data Validation -- Range Checks -- Fixed Range Outliers -- Distribution Based Outliers -- Computed Checks -- Exercise 3.5 -- Feasibility and Consistency Checks -- Data Correction Outside of VisMiner -- Distribution Consistency -- Pattern Checks -- A Pattern Check of Experimental Data -- Exercise 3.6 -- Summary -- 4. Prediction Algorithms for Data Mining -- Decision Trees -- Stopping the Splitting Process -- A Decision Tree Example -- Using Decision Trees -- Decision Tree Advantages 
505 8 |a Limitations -- Artificial Neural Networks -- Overfitting the Model -- Moving Beyond Local Optima -- ANN Advantages and Limitations -- Support Vector Machines -- Data Transformations -- Moving Beyond Two-dimensional Predictors -- SVM Advantages and Limitations -- Summary -- 5. Classification Models in VisMiner -- Dataset Preparation -- Tutorial -- Building and Evaluating Classification Models -- Model Evaluation -- Exercise 5.1 -- Prediction Likelihoods -- Classification Model Performance -- Interpreting the ROC Curve -- Classification Ensembles -- Model Application -- Summary -- Exercise 5.2 
505 8 |a Exercise 5.3 -- 6. Regression Analysis -- The Regression Model -- Correlation and Causation -- Algorithms for Regression Analysis -- Assessing Regression Model Performance -- Model Validity -- Looking Beyond R2 -- Polynomial Regression -- Artificial Neural Networks for Regression Analysis -- Dataset Preparation -- Tutorial -- A Regression Model for Home Appraisal -- Modeling with the Right Set of Observations -- Exercise 6.1 -- ANN Modeling -- The Advantage of ANN Regression -- Top-Down Attribute Selection -- Issues in Model Interpretation -- Model Validation -- Model Application -- Summary 
500 |a 7. Cluster Analysis 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a Visual data mining (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH3pwRR3Ky4hK3fWKWVq6X  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Anderson, Russell K.  |t Visual Data Mining  |d Newark : John Wiley & Sons, Incorporated,c2012  |z 9781119967545 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103658  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7103658 
994 |a 92  |b IZTAP