Statistics with JMP Graphs, Descriptive Statistics and Probability.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2015.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgments
- Chapter 1 What is statistics?
- 1.1 Why statistics?
- 1.2 Definition of statistics
- 1.3 Examples
- 1.4 The subject of statistics
- 1.5 Probability
- 1.6 Software
- Chapter 2 Data and its representation
- 2.1 Types of data and measurement scales
- 2.1.1 Categorical or qualitative variables
- 2.1.2 Quantitative variables
- 2.1.3 Hierarchy of scales
- 2.1.4 Measurement scales in JMP
- 2.2 The data matrix
- 2.3 Representing univariate qualitative variables
- 2.4 Representing univariate quantitative variables
- 2.4.1 Stem and leaf diagram
- 2.4.2 Needle charts for univariate discrete quantitative variables
- 2.4.3 Histograms and frequency polygons for continuous variables
- 2.4.4 Empirical cumulative distribution functions
- 2.5 Representing bivariate data
- 2.5.1 Qualitative variables
- 2.5.2 Quantitative variables
- 2.6 Representing time series
- 2.7 The use of maps
- 2.8 More graphical capabilities
- Chapter 3 Descriptive statistics of sample data
- 3.1 Measures of central tendency or location
- 3.1.1 Median
- 3.1.2 Mode
- 3.1.3 Arithmetic mean
- 3.1.4 Geometric mean
- 3.2 Measures of relative location
- 3.2.1 Order statistics, quantiles, percentiles, deciles
- 3.2.2 Quartiles
- 3.3 Measures of variation or spread
- 3.3.1 Range
- 3.3.2 Interquartile range
- 3.3.3 Mean absolute deviation
- 3.3.4 Variance
- 3.3.5 Standard deviation
- 3.3.6 Coefficient of variation
- 3.3.7 Dispersion indices for nominal and ordinal variables
- 3.4 Measures of skewness
- 3.5 Kurtosis
- 3.6 Transformation and standardization of data
- 3.7 Box plots
- 3.8 Variability charts
- 3.9 Bivariate data
- 3.9.1 Covariance
- 3.9.2 Correlation
- 3.9.3 Rank correlation
- 3.10 Complementarity of statistics and graphics
- 3.11 Descriptive statistics using JMP
- Chapter 4 Probability
- 4.1 Random experiments
- 4.2 Definition of probability
- 4.3 Calculation rules
- 4.4 Conditional probability
- 4.5 Independent and dependent events
- 4.6 Total probability and Bayes' rule
- 4.7 Simulating random experiments
- Chapter 5 Additional aspects of probability theory
- 5.1 Combinatorics
- 5.1.1 Addition rule
- 5.1.2 Multiplication principle
- 5.1.3 Permutations
- 5.1.4 Combinations
- 5.2 Number of possible orders
- 5.2.1 Two different objects
- 5.2.2 More than two different objects
- 5.3 Applications of probability theory
- 5.3.1 Sequences of independent random experiments
- 5.3.2 Euromillions
- Chapter 6 Univariate random variables
- 6.1 Random variables and distribution functions
- 6.2 Discrete random variables and probability distributions
- 6.3 Continuous random variables and probability densities
- 6.4 Functions of random variables
- 6.4.1 Functions of one discrete random variable
- 6.4.2 Functions of one continuous random variable