Introduction to Stochastic Processes with R
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- TITLE PAGE
- COPYRIGHT
- DEDICATION
- TABLE OF CONTENTS
- PREFACE
- ACKNOWLEDGMENTS
- LIST OF SYMBOLS AND NOTATION
- NOTATION CONVENTIONS
- ABBREVIATIONS
- ABOUT THE COMPANION WEBSITE
- CHAPTER 1: INTRODUCTION AND REVIEW
- 1.1 DETERMINISTIC AND STOCHASTIC MODELS
- 1.2 WHAT IS A STOCHASTIC PROCESS?
- 1.3 MONTE CARLO SIMULATION
- 1.4 CONDITIONAL PROBABILITY
- 1.5 CONDITIONAL EXPECTATION
- CHAPTER 2: MARKOV CHAINS: FIRST STEPS
- 2.1 INTRODUCTION
- 2.2 MARKOV CHAIN CORNUCOPIA
- 2.3 BASIC COMPUTATIONS
- 2.4 LONG-TERM BEHAVIOR-THE NUMERICAL EVIDENCE
- 2.5 SIMULATION
- 2.6 MATHEMATICAL INDUCTION*
- CHAPTER 3: MARKOV CHAINS FOR THE LONG TERM
- 3.1 LIMITING DISTRIBUTION
- 3.2 STATIONARY DISTRIBUTION
- 3.3 CAN YOU FIND THE WAY TO STATE a?
- 3.4 IRREDUCIBLE MARKOV CHAINS
- 3.5 PERIODICITY
- 3.6 ERGODIC MARKOV CHAINS
- 3.7 TIME REVERSIBILITY
- 3.8 ABSORBING CHAINS
- 3.9 REGENERATION AND THE STRONG MARKOV PROPERTY*
- 3.10 PROOFS OF LIMIT THEOREMS*
- CHAPTER 4: BRANCHING PROCESSES
- 4.1 INTRODUCTION
- 4.2 MEAN GENERATION SIZE
- 4.3 PROBABILITY GENERATING FUNCTIONS
- 4.4 EXTINCTION IS FOREVER
- CHAPTER 5: MARKOV CHAIN MONTE CARLO
- 5.1 INTRODUCTION
- 5.2 METROPOLIS-HASTINGS ALGORITHM
- 5.3 GIBBS SAMPLER
- 5.4 PERFECT SAMPLING*
- 5.5 RATE OF CONVERGENCE: THE EIGENVALUE CONNECTION*
- 5.6 CARD SHUFFLING AND TOTAL VARIATION DISTANCE*
- CHAPTER 6: POISSON PROCESS
- 6.1 INTRODUCTION
- 6.2 ARRIVAL, INTERARRIVAL TIMES
- 6.3 INFINITESIMAL PROBABILITIES
- 6.4 THINNING, SUPERPOSITION
- 6.5 UNIFORM DISTRIBUTION
- 6.6 SPATIAL POISSON PROCESS
- 6.7 NONHOMOGENEOUS POISSON PROCESS
- 6.8 PARTING PARADOX
- CHAPTER 7: CONTINUOUS-TIME MARKOV CHAINS
- 7.1 INTRODUCTION
- 7.2 ALARM CLOCKS AND TRANSITION RATES
- 7.3 INFINITESIMAL GENERATOR
- 7.4 LONG-TERM BEHAVIOR
- 7.5 TIME REVERSIBILITY
- 7.6 QUEUEING THEORY
- 7.7 POISSON SUBORDINATION
- CHAPTER 8: BROWNIAN MOTION
- 8.1 INTRODUCTION
- 8.2 BROWNIAN MOTION AND RANDOM WALK
- 8.3 GAUSSIAN PROCESS
- 8.4 TRANSFORMATIONS AND PROPERTIES
- 8.5 VARIATIONS AND APPLICATIONS
- 8.6 MARTINGALES
- CHAPTER 9: A GENTLE INTRODUCTION TO STOCHASTIC CALCULUS*
- 9.1 INTRODUCTION
- 9.2 ITO INTEGRAL
- 9.3 STOCHASTIC DIFFERENTIAL EQUATIONS
- APPENDIX A: GETTING STARTED WITH R
- APPENDIX B: PROBABILITY REVIEW
- B.1 DISCRETE RANDOM VARIABLES
- B.2 JOINT DISTRIBUTION
- B.3 CONTINUOUS RANDOM VARIABLES
- B.4 COMMON PROBABILITY DISTRIBUTIONS
- B.5 LIMIT THEOREMS
- B.6 MOMENT-GENERATING FUNCTIONS
- APPENDIX C: SUMMARY OF COMMON PROBABILITY DISTRIBUTIONS
- APPENDIX D: MATRIX ALGEBRA REVIEW
- D.1 BASIC OPERATIONS
- D.2 LINEAR SYSTEM
- D.3 MATRIX MULTIPLICATION
- D.4 DIAGONAL, IDENTITY MATRIX, POLYNOMIALS
- D.5 TRANSPOSE
- D.6 INVERTIBILITY
- D.7 BLOCK MATRICES
- D.8 LINEAR INDEPENDENCE AND SPAN
- D.9 BASIS
- D.10 VECTOR LENGTH
- D.11 ORTHOGONALITY
- D.12 EIGENVALUE, EIGENVECTOR
- D.13 DIAGONALIZATION
- ANSWERS TO SELECTED ODD-NUMBERED EXERCISES