Cargando…

The History of Mathematics A Brief Course.

Detalles Bibliográficos
Autor principal: Cooke, Roger L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2012.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright
  • Preface
  • Changes from the Second Edition
  • Elementary Texts on the History of Mathematics
  • Part I: What is Mathematics?
  • Contents of Part I
  • Chapter 1: Mathematics and its History
  • 1.1 Two Ways to Look at the History of Mathematics
  • 1.2 The Origin of Mathematics
  • 1.3 The Philosophy of Mathematics
  • 1.4 Our Approach to the History of Mathematics
  • Questions for Reflection
  • Chapter 2: Proto-mathematics
  • 2.1 Number
  • 2.2 Shape
  • 2.3 Symbols
  • 2.4 Mathematical Reasoning
  • Problems and Questions
  • Part II: The Middle East, 2000-1500 BCE
  • Of Part II
  • Chapter 3: Overview of Mesopotamian Mathematics
  • 3.1 A Sketch of Two Millennia of Mesopotamian History
  • 3.2 Mathematical Cuneiform Tablets
  • 3.3 Systems of Measuring and Counting
  • 3.4 The Mesopotamian Numbering System
  • Problems and Questions
  • Chapter 4: Computations in Ancient Mesopotamia
  • 4.1 Arithmetic
  • 4.2 Algebra
  • Problems and Questions
  • Chapter 5: Geometry in Mesopotamia
  • 5.1 The Pythagorean Theorem
  • 5.2 Plane Figures
  • 5.3 Volumes
  • 5.4 Plimpton 322
  • Problems and Questions
  • Chapter 6: Egyptian Numerals and Arithmetic
  • 6.1 Sources
  • 6.2 The Rhind Papyrus
  • 6.3 Egyptian Arithmetic
  • 6.4 Computation
  • Problems and Questions
  • Chapter 7: Algebra and Geometry in Ancient Egypt
  • 7.1 Algebra Problems in the Rhind Papyrus
  • 7.2 Geometry
  • 7.3 Areas
  • Problems and Questions
  • Part III: Greek Mathematics From 500 BCE to 500 CE
  • Contents of Part III
  • Chapter 8: An Overview of Ancient Greek Mathematics
  • 8.1 Sources
  • 8.2 General Features of Greek Mathematics
  • 8.3 Works and Authors
  • Questions
  • Chapter 9: Greek Number Theory
  • 9.1 The Euclidean Algorithm
  • 9.2 The Arithmetica of Nicomachus
  • 9.3 Euclid's Number Theory
  • 9.4 The Arithmetica of Diophantus
  • Problems and Questions
  • Chapter 10: Fifth-Century Greek Geometry
  • 10.1 "Pythagorean" Geometry
  • 10.2 Challenge No. 1: Unsolved Problems
  • 10.3 Challenge No. 2: The Paradoxes of Zeno of Elea
  • 10.4 Challenge No. 3: Irrational Numbers and Incommensurable Lines
  • Problems and Questions
  • Chapter 11: Athenian Mathematics I: The Classical Problems
  • 11.1 Squaring the Circle
  • 11.2 Doubling the Cube
  • 11.3 Trisecting the Angle
  • Problems and Questions
  • Chapter 12: Athenian Mathematics II: Plato and Aristotle
  • 12.1 The Influence of Plato
  • 12.2 Eudoxan Geometry
  • 12.3 Aristotle
  • Problems and Questions
  • Chapter 13: Euclid of Alexandria
  • 13.1 The Elements
  • 13.2 The Data
  • Problems and Questions
  • Chapter 14: Archimedes of Syracuse
  • 14.1 The Works of Archimedes
  • 14.2 The Surface of a Sphere
  • 14.3 The Archimedes Palimpsest
  • 14.4 Quadrature of the Parabola
  • Problems and Questions
  • Chapter 15: Apollonius of Perga
  • 15.1 History of the Conics
  • 15.2 Contents of the Conics
  • 15.3 Foci and the Three-and Four-line Locus
  • Problems and Questions