An Introduction to Bootstrap Methods with Applications to R
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2011.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgments
- List of Tables
- 1: INTRODUCTION
- 1.1 Historical Background
- 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods
- 1.2.1 Jackknife
- 1.2.2 Delta Method
- 1.2.3 Cross Validation
- 1.2.4 Subsampling
- 1.3 Wide Range of Applications
- 1.4 The Bootstrap and the R Language System
- 1.5 Historical Notes
- 1.6 Exercises
- References
- 2: ESTIMATION
- 2.1 Estimating Bias
- 2.1.1 Bootstrap Adjustment
- 2.1.2 Error Rate Estimation in Discriminant Analysis
- 2.1.3 Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation
- 2.1.4 Patch Data Example
- 2.2 Estimating Location
- 2.2.1 Estimating a Mean
- 2.2.2 Estimating a Median
- 2.3 Estimating Dispersion
- 2.3.1 Estimating an Estimate's Standard Error
- 2.3.2 Estimating Interquartile Range
- 2.4 Linear Regression
- 2.4.1 Overview
- 2.4.2 Bootstrapping Residuals
- 2.4.3 Bootstrapping Pairs (response and Predictor Vector)
- 2.4.4 Heteroscedasticity of Variance: the Wild Bootstrap
- 2.4.5 a Special Class of Linear Regression Models: Multivariable Fractional Polynomials
- 2.5 Nonlinear Regression
- 2.5.1 Examples of Nonlinear Models
- 2.5.2 a Quasi Optical Experiment
- 2.6 Nonparametric Regression
- 2.6.1 Examples of Nonparametric Regression Models
- 2.6.2 Bootstrap Bagging
- 2.7 Historical Notes
- 2.8 Exercises
- References
- 3: CONFIDENCE INTERVALS
- 3.1 Subsampling, Typical Value Theorem, and Efron's Percentile Method
- 3.2 Bootstrap-t
- 3.3 Iterated Bootstrap
- 3.4 Bias Corrected (BC) Bootstrap
- 3.5 Bca and Abc
- 3.6 Tilted Bootstrap
- 3.7 Variance Estimation with Small Sample Sizes
- 3.8 Historical Notes
- 3.9 Exercises
- References
- 4: HYPOTHESIS TESTING
- 4.1 Relationship to Confidence Intervals
- 4.2 Why Test Hypotheses Differently?
- 4.3 Tendril Dx Example
- 4.4 Klingenberg Example: Binary Dose-response
- 4.5 Historical Notes
- 4.6 Exercises
- References
- 5: TIME SERIES
- 5.1 Forecasting Methods
- 5.2 Time Domain Models
- 5.3 Can Bootstrapping Improve Prediction Intervals?
- 5.4 Model Based Methods
- 5.4.1 Bootstrapping Stationary Autoregressive Processes
- 5.4.2 Bootstrapping Explosive Autoregressive Processes
- 5.4.3 Bootstrapping Unstable Autoregressive Processes
- 5.4.4 Bootstrapping Stationary Arma Processes
- 5.5 Block Bootstrapping for Stationary Time Series
- 5.6 Dependent Wild Bootstrap (DWB)
- 5.7 Frequency-based Approaches for Stationary Time Series
- 5.8 Sieve Bootstrap
- 5.9 Historical Notes
- 5.10 Exercises
- References
- 6: BOOTSTRAP VARIANTS
- 6.1 Bayesian Bootstrap
- 6.2 Smoothed Bootstrap
- 6.3 Parametric Bootstrap
- 6.4 Double Bootstrap
- 6.5 the M-out-of-n Bootstrap
- 6.6 the Wild Bootstrap
- 6.7 Historical Notes
- 6.8 Exercise
- References
- 7: CHAPTER SPECIAL TOPICS
- 7.1 Spatial Data
- 7.1.1 Kriging