|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1347026804 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
230209s2011 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d OCLCQ
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCL
|d OCLCQ
|
020 |
|
|
|a 9781118625453
|
020 |
|
|
|a 1118625455
|
035 |
|
|
|a (OCoLC)1347026804
|
082 |
0 |
4 |
|a 519.5/4
|q OCoLC
|2 22/eng/20231120
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chernick, Michael R.
|
245 |
1 |
3 |
|a An Introduction to Bootstrap Methods with Applications to R
|h [electronic resource].
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2011.
|
300 |
|
|
|a 1 online resource (236 p.).
|
490 |
1 |
|
|a New York Academy of Sciences Ser.
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- List of Tables -- 1: INTRODUCTION -- 1.1 Historical Background -- 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods -- 1.2.1 Jackknife -- 1.2.2 Delta Method -- 1.2.3 Cross Validation -- 1.2.4 Subsampling -- 1.3 Wide Range of Applications -- 1.4 The Bootstrap and the R Language System -- 1.5 Historical Notes -- 1.6 Exercises -- References -- 2: ESTIMATION -- 2.1 Estimating Bias -- 2.1.1 Bootstrap Adjustment -- 2.1.2 Error Rate Estimation in Discriminant Analysis
|
505 |
8 |
|
|a 2.1.3 Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation -- 2.1.4 Patch Data Example -- 2.2 Estimating Location -- 2.2.1 Estimating a Mean -- 2.2.2 Estimating a Median -- 2.3 Estimating Dispersion -- 2.3.1 Estimating an Estimate's Standard Error -- 2.3.2 Estimating Interquartile Range -- 2.4 Linear Regression -- 2.4.1 Overview -- 2.4.2 Bootstrapping Residuals -- 2.4.3 Bootstrapping Pairs (response and Predictor Vector) -- 2.4.4 Heteroscedasticity of Variance: the Wild Bootstrap -- 2.4.5 a Special Class of Linear Regression Models: Multivariable Fractional Polynomials
|
505 |
8 |
|
|a 2.5 Nonlinear Regression -- 2.5.1 Examples of Nonlinear Models -- 2.5.2 a Quasi Optical Experiment -- 2.6 Nonparametric Regression -- 2.6.1 Examples of Nonparametric Regression Models -- 2.6.2 Bootstrap Bagging -- 2.7 Historical Notes -- 2.8 Exercises -- References -- 3: CONFIDENCE INTERVALS -- 3.1 Subsampling, Typical Value Theorem, and Efron's Percentile Method -- 3.2 Bootstrap-t -- 3.3 Iterated Bootstrap -- 3.4 Bias Corrected (BC) Bootstrap -- 3.5 Bca and Abc -- 3.6 Tilted Bootstrap -- 3.7 Variance Estimation with Small Sample Sizes -- 3.8 Historical Notes -- 3.9 Exercises -- References
|
505 |
8 |
|
|a 4: HYPOTHESIS TESTING -- 4.1 Relationship to Confidence Intervals -- 4.2 Why Test Hypotheses Differently? -- 4.3 Tendril Dx Example -- 4.4 Klingenberg Example: Binary Dose-response -- 4.5 Historical Notes -- 4.6 Exercises -- References -- 5: TIME SERIES -- 5.1 Forecasting Methods -- 5.2 Time Domain Models -- 5.3 Can Bootstrapping Improve Prediction Intervals? -- 5.4 Model Based Methods -- 5.4.1 Bootstrapping Stationary Autoregressive Processes -- 5.4.2 Bootstrapping Explosive Autoregressive Processes -- 5.4.3 Bootstrapping Unstable Autoregressive Processes
|
505 |
8 |
|
|a 5.4.4 Bootstrapping Stationary Arma Processes -- 5.5 Block Bootstrapping for Stationary Time Series -- 5.6 Dependent Wild Bootstrap (DWB) -- 5.7 Frequency-based Approaches for Stationary Time Series -- 5.8 Sieve Bootstrap -- 5.9 Historical Notes -- 5.10 Exercises -- References -- 6: BOOTSTRAP VARIANTS -- 6.1 Bayesian Bootstrap -- 6.2 Smoothed Bootstrap -- 6.3 Parametric Bootstrap -- 6.4 Double Bootstrap -- 6.5 the M-out-of-n Bootstrap -- 6.6 the Wild Bootstrap -- 6.7 Historical Notes -- 6.8 Exercise -- References -- 7: CHAPTER SPECIAL TOPICS -- 7.1 Spatial Data -- 7.1.1 Kriging
|
500 |
|
|
|a 7.1.2 Asymptotics for Spatial Data
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
655 |
|
0 |
|a Electronic books.
|
758 |
|
|
|i has work:
|a An introduction to bootstrap methods with applications to R (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFKtX6vcx9GDryw7JvkcHd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chernick, Michael R.
|t An Introduction to Bootstrap Methods with Applications to R
|d Newark : John Wiley & Sons, Incorporated,c2011
|z 9780470467046
|
830 |
|
0 |
|a New York Academy of Sciences Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103888
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7103888
|
994 |
|
|
|a 92
|b IZTAP
|