Cargando…

An Introduction to Bootstrap Methods with Applications to R

Detalles Bibliográficos
Autor principal: Chernick, Michael R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2011.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347026804
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2011 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ 
020 |a 9781118625453 
020 |a 1118625455 
035 |a (OCoLC)1347026804 
082 0 4 |a 519.5/4  |q OCoLC  |2 22/eng/20231120 
049 |a UAMI 
100 1 |a Chernick, Michael R. 
245 1 3 |a An Introduction to Bootstrap Methods with Applications to R  |h [electronic resource]. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2011. 
300 |a 1 online resource (236 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- List of Tables -- 1: INTRODUCTION -- 1.1 Historical Background -- 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods -- 1.2.1 Jackknife -- 1.2.2 Delta Method -- 1.2.3 Cross Validation -- 1.2.4 Subsampling -- 1.3 Wide Range of Applications -- 1.4 The Bootstrap and the R Language System -- 1.5 Historical Notes -- 1.6 Exercises -- References -- 2: ESTIMATION -- 2.1 Estimating Bias -- 2.1.1 Bootstrap Adjustment -- 2.1.2 Error Rate Estimation in Discriminant Analysis 
505 8 |a 2.1.3 Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation -- 2.1.4 Patch Data Example -- 2.2 Estimating Location -- 2.2.1 Estimating a Mean -- 2.2.2 Estimating a Median -- 2.3 Estimating Dispersion -- 2.3.1 Estimating an Estimate's Standard Error -- 2.3.2 Estimating Interquartile Range -- 2.4 Linear Regression -- 2.4.1 Overview -- 2.4.2 Bootstrapping Residuals -- 2.4.3 Bootstrapping Pairs (response and Predictor Vector) -- 2.4.4 Heteroscedasticity of Variance: the Wild Bootstrap -- 2.4.5 a Special Class of Linear Regression Models: Multivariable Fractional Polynomials 
505 8 |a 2.5 Nonlinear Regression -- 2.5.1 Examples of Nonlinear Models -- 2.5.2 a Quasi Optical Experiment -- 2.6 Nonparametric Regression -- 2.6.1 Examples of Nonparametric Regression Models -- 2.6.2 Bootstrap Bagging -- 2.7 Historical Notes -- 2.8 Exercises -- References -- 3: CONFIDENCE INTERVALS -- 3.1 Subsampling, Typical Value Theorem, and Efron's Percentile Method -- 3.2 Bootstrap-t -- 3.3 Iterated Bootstrap -- 3.4 Bias Corrected (BC) Bootstrap -- 3.5 Bca and Abc -- 3.6 Tilted Bootstrap -- 3.7 Variance Estimation with Small Sample Sizes -- 3.8 Historical Notes -- 3.9 Exercises -- References 
505 8 |a 4: HYPOTHESIS TESTING -- 4.1 Relationship to Confidence Intervals -- 4.2 Why Test Hypotheses Differently? -- 4.3 Tendril Dx Example -- 4.4 Klingenberg Example: Binary Dose-response -- 4.5 Historical Notes -- 4.6 Exercises -- References -- 5: TIME SERIES -- 5.1 Forecasting Methods -- 5.2 Time Domain Models -- 5.3 Can Bootstrapping Improve Prediction Intervals? -- 5.4 Model Based Methods -- 5.4.1 Bootstrapping Stationary Autoregressive Processes -- 5.4.2 Bootstrapping Explosive Autoregressive Processes -- 5.4.3 Bootstrapping Unstable Autoregressive Processes 
505 8 |a 5.4.4 Bootstrapping Stationary Arma Processes -- 5.5 Block Bootstrapping for Stationary Time Series -- 5.6 Dependent Wild Bootstrap (DWB) -- 5.7 Frequency-based Approaches for Stationary Time Series -- 5.8 Sieve Bootstrap -- 5.9 Historical Notes -- 5.10 Exercises -- References -- 6: BOOTSTRAP VARIANTS -- 6.1 Bayesian Bootstrap -- 6.2 Smoothed Bootstrap -- 6.3 Parametric Bootstrap -- 6.4 Double Bootstrap -- 6.5 the M-out-of-n Bootstrap -- 6.6 the Wild Bootstrap -- 6.7 Historical Notes -- 6.8 Exercise -- References -- 7: CHAPTER SPECIAL TOPICS -- 7.1 Spatial Data -- 7.1.1 Kriging 
500 |a 7.1.2 Asymptotics for Spatial Data 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a An introduction to bootstrap methods with applications to R (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFKtX6vcx9GDryw7JvkcHd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chernick, Michael R.  |t An Introduction to Bootstrap Methods with Applications to R  |d Newark : John Wiley & Sons, Incorporated,c2011  |z 9780470467046 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7103888  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7103888 
994 |a 92  |b IZTAP